trying Stratified Kfold split on running multiple pipelines
This commit is contained in:
parent
bb8f6f70ba
commit
1bfb35c30c
7 changed files with 287 additions and 72 deletions
|
@ -20,7 +20,8 @@ from xgboost import XGBClassifier
|
|||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
||||
#%%
|
||||
rs = {'random_state': 42}
|
||||
# TODO: add preprocessing step with one hot encoder
|
||||
|
@ -63,7 +64,7 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
|||
|
||||
pipelines = []
|
||||
|
||||
scores_df = pd.DataFrame(columns=['Model', 'F1_Score', 'Precision', 'Recall', 'Accuracy', 'ROC_AUC'])
|
||||
scores_df = pd.DataFrame(columns=['Model', 'F1_Score', 'MCC', 'Precision', 'Recall', 'Accuracy', 'ROC_AUC'])
|
||||
|
||||
for clf_name, clf in clfs:
|
||||
|
||||
|
@ -83,24 +84,26 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
|||
# Precision
|
||||
pres = precision_score(y_test, y_pred)
|
||||
# Recall
|
||||
rcall = recall_score(y_test, y_pred)
|
||||
recall = recall_score(y_test, y_pred)
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test, y_pred)
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test, y_pred)
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test, y_pred)
|
||||
|
||||
pipelines.append(pipeline)
|
||||
|
||||
scores_df = scores_df.append({
|
||||
'Model' : clf_name,
|
||||
'F1_Score' : fscore,
|
||||
'Precision' : pres,
|
||||
'Recall' : rcall,
|
||||
'Accuracy' : accu,
|
||||
'ROC_AUC' : roc_auc
|
||||
|
||||
},
|
||||
ignore_index = True)
|
||||
'Model' : clf_name
|
||||
, 'F1_Score' : fscore
|
||||
, 'MCC' : mcc
|
||||
, 'Precision' : pres
|
||||
, 'Recall' : recall
|
||||
, 'Accuracy' : accu
|
||||
, 'ROC_AUC' : roc_auc
|
||||
}
|
||||
, ignore_index = True)
|
||||
|
||||
return pipelines, scores_df
|
||||
|
||||
|
|
|
@ -21,7 +21,8 @@ from sklearn.compose import ColumnTransformer
|
|||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
||||
#%%
|
||||
rs = {'random_state': 42}
|
||||
# Done: add preprocessing step with one hot encoder
|
||||
|
@ -70,10 +71,9 @@ def MultClassPipeline2(X_train, X_test, y_train, y_test, input_df):
|
|||
('XGBoost', xgb)
|
||||
]
|
||||
|
||||
|
||||
pipelines = []
|
||||
|
||||
scores_df = pd.DataFrame(columns=['Model', 'F1_Score', 'Precision', 'Recall', 'Accuracy', 'ROC_AUC'])
|
||||
scores_df = pd.DataFrame(columns=['Model', 'F1_Score', 'MCC', 'Precision', 'Recall', 'Accuracy', 'ROC_AUC'])
|
||||
|
||||
for clf_name, clf in clfs:
|
||||
#%%
|
||||
|
@ -101,10 +101,12 @@ def MultClassPipeline2(X_train, X_test, y_train, y_test, input_df):
|
|||
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test, y_pred)
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test, y_pred)
|
||||
# Precision
|
||||
pres = precision_score(y_test, y_pred)
|
||||
# Recall
|
||||
rcall = recall_score(y_test, y_pred)
|
||||
recall = recall_score(y_test, y_pred)
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test, y_pred)
|
||||
# ROC_AUC
|
||||
|
@ -113,15 +115,15 @@ def MultClassPipeline2(X_train, X_test, y_train, y_test, input_df):
|
|||
pipelines.append(pipeline)
|
||||
|
||||
scores_df = scores_df.append({
|
||||
'Model' : clf_name,
|
||||
'F1_Score' : fscore,
|
||||
'Precision' : pres,
|
||||
'Recall' : rcall,
|
||||
'Accuracy' : accu,
|
||||
'ROC_AUC' : roc_auc
|
||||
|
||||
},
|
||||
ignore_index = True)
|
||||
'Model' : clf_name
|
||||
, 'F1_Score' : fscore
|
||||
, 'MCC' : mcc
|
||||
, 'Precision' : pres
|
||||
, 'Recall' : recall
|
||||
, 'Accuracy' : accu
|
||||
, 'ROC_AUC' : roc_auc
|
||||
}
|
||||
, ignore_index = True)
|
||||
|
||||
return pipelines, scores_df
|
||||
|
||||
|
|
Binary file not shown.
|
@ -21,12 +21,15 @@ from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
|
@ -39,13 +42,15 @@ import matplotlib.pyplot as plt
|
|||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
from statistics import mean, stdev
|
||||
from statistics import mean, stdev, median, mode
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe import MultClassPipeline
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
from MultClassPipe3 import MultClassPipeSKF
|
||||
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
|
249
my_data10.py
249
my_data10.py
|
@ -6,14 +6,11 @@ Created on Sat Mar 5 12:57:32 2022
|
|||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%%
|
||||
# Data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%% Specify dir and import functions
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
#%% try combinations
|
||||
#%% Try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
def precision(y_true,y_pred):
|
||||
|
@ -23,13 +20,12 @@ def recall(y_true,y_pred):
|
|||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
#%%
|
||||
|
||||
#%% Check df features
|
||||
numerical_features_df.shape
|
||||
categorical_features_df.shape
|
||||
all_features_df.shape
|
||||
all_features_df.dtypes
|
||||
#%%
|
||||
#%% Simple train and test data splits
|
||||
target = target1
|
||||
#target = target3
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df,
|
||||
|
@ -46,44 +42,231 @@ X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
|||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
#%%
|
||||
#%% Stratified K-fold: Single model
|
||||
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('log_reg', LogisticRegression(class_weight = 'balanced')) ])
|
||||
model1
|
||||
rs = {'random_state': 42}
|
||||
log_reg = LogisticRegression(**rs)
|
||||
nb = BernoulliNB()
|
||||
clfs = [('Logistic Regression', log_reg)
|
||||
,('Naive Bayes', nb)]
|
||||
|
||||
seed_skf = 42
|
||||
skf = StratifiedKFold(n_splits = 10
|
||||
, shuffle = True
|
||||
, random_state = seed_skf)
|
||||
|
||||
#%% with feature selection
|
||||
X_array = np.array(numerical_features_df)
|
||||
Y = target1
|
||||
|
||||
# Determine categorical and numerical features
|
||||
input_df = numerical_features_df.copy()
|
||||
#input_df = categorical_features_df
|
||||
#input_df = all_features_df
|
||||
model_scores_df = pd.DataFrame()
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
|
||||
numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
for train_index, test_index in skf.split(X_array, Y):
|
||||
x_train_fold, x_test_fold = X_array[train_index], X_array[test_index]
|
||||
y_train_fold, y_test_fold = Y[train_index], Y[test_index]
|
||||
|
||||
model1.fit(x_train_fold, y_train_fold)
|
||||
y_pred_fold = model1.predict(x_test_fold)
|
||||
|
||||
#----------------
|
||||
# Model metrics
|
||||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
fscoreM = mean(fscoreL)
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
|
||||
model_scores_df = model_scores_df.append({'Model' : model1.steps[1][0]
|
||||
,'F1_score' : fscoreM
|
||||
, 'MCC' : mccM
|
||||
, 'Precision': presM
|
||||
, 'Recall' : recallM
|
||||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
print('\nModel metrics:', model_scores_df)
|
||||
#%% stratified KFold: Multiple_models:
|
||||
input_df = numerical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
Y = target1
|
||||
var_type = 'numerical'
|
||||
|
||||
input_df = all_features_df
|
||||
#X_array = np.array(input_df)
|
||||
Y = target1
|
||||
var_type = 'mixed'
|
||||
|
||||
input_df = categorical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
Y = target1
|
||||
var_type = 'categorical'
|
||||
|
||||
#=================
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns
|
||||
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# prepare data
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
# Determine preprocessing steps ~ var_type
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
##############################
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
# model pipeline
|
||||
model = Pipeline(steps=[('prep', col_transform)
|
||||
, ('classifier', LogisticRegression())])
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred
|
||||
rs = {'random_state': 42}
|
||||
|
||||
selector_log = RFECV(estimator = model
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
#log_reg = LogisticRegression(**rs)
|
||||
log_reg = LogisticRegression(class_weight = 'balanced')
|
||||
nb = BernoulliNB()
|
||||
rf = RandomForestClassifier(**rs)
|
||||
|
||||
selector_log_x = selector_log.fit_transform(X_train, y_train)
|
||||
clfs = [('Logistic Regression', log_reg)
|
||||
,('Naive Bayes', nb)
|
||||
, ('Random Forest' , rf)
|
||||
]
|
||||
|
||||
print(selector_log_x.get_support())
|
||||
X_trainN.columns
|
||||
#seed_skf = 42
|
||||
skf = StratifiedKFold(n_splits = 10
|
||||
, shuffle = True
|
||||
#, random_state = seed_skf
|
||||
, **rs)
|
||||
#scores_df = pd.DataFrame()
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
|
||||
print(selector_logistic_x.ranking_)
|
||||
for train_index, test_index in skf.split(input_df, Y):
|
||||
print('\nSKF train index:', train_index
|
||||
, '\nSKF test index:', test_index)
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = Y.iloc[train_index], Y.iloc[test_index]
|
||||
# for train_index, test_index in skf.split(X_array, Y):
|
||||
# print('\nSKF train index:', train_index
|
||||
# , '\nSKF test index:', test_index)
|
||||
# x_train_fold, x_test_fold = X_array[train_index], X_array[test_index]
|
||||
# y_train_fold, y_test_fold = Y[train_index], Y[test_index]
|
||||
|
||||
|
||||
clf_scores_df = pd.DataFrame()
|
||||
for clf_name, clf in clfs:
|
||||
# model2 = Pipeline(steps=[('preprocess', MinMaxScaler())
|
||||
# , ('classifier', clf)])
|
||||
model2 = Pipeline(steps=[('preprocess', col_transform)
|
||||
, ('classifier', clf)])
|
||||
|
||||
model2.fit(x_train_fold, y_train_fold)
|
||||
y_pred_fold = model2.predict(x_test_fold)
|
||||
|
||||
#----------------
|
||||
# Model metrics
|
||||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
fscoreM = mean(fscoreL)
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
|
||||
clf_scores_df = clf_scores_df.append({'Model': clf_name
|
||||
,'F1_score' : fscoreM
|
||||
, 'MCC' : mccM
|
||||
, 'Precision': presM
|
||||
, 'Recall' : recallM
|
||||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
#scores_df = scores_df.append(clf_scores_df)
|
||||
|
||||
|
||||
#%% Call functions
|
||||
|
||||
tN_res = MultClassPipeline(X_trainN, X_testN, y_trainN, y_testN)
|
||||
tN_res
|
||||
|
||||
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
|
||||
t2_res
|
||||
|
||||
#CHECK: numbers are awfully close to each other!
|
||||
|
||||
t3_res = MultClassPipeSKF(input_df = numerical_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'numerical'
|
||||
, skf_splits = 10)
|
||||
t3_res
|
||||
|
||||
#CHECK: numbers are awfully close to each other!
|
||||
t4_res = MultClassPipeSKF(input_df = all_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'mixed'
|
||||
, skf_splits = 10)
|
||||
t4_res
|
22
my_data9.py
22
my_data9.py
|
@ -7,12 +7,6 @@ Created on Sat Mar 5 12:57:32 2022
|
|||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
#%% try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
|
@ -130,5 +124,21 @@ pipeline = Pipeline(steps=[('prep', col_transform)
|
|||
, ('classifier', LogisticRegression())])
|
||||
#%% Added this to the MultClassPipeline
|
||||
|
||||
tN_res = MultClassPipeline(X_trainN, X_testN, y_trainN, y_testN)
|
||||
tN_res
|
||||
|
||||
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
|
||||
t2_res
|
||||
|
||||
t3_res = MultClassPipeSKF(input_df = numerical_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'numerical'
|
||||
, skf_splits = 10)
|
||||
t3_res
|
||||
|
||||
|
||||
t4_res = MultClassPipeSKF(input_df = all_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'mixed'
|
||||
, skf_splits = 10)
|
||||
t4_res
|
|
@ -85,3 +85,15 @@ all_features: numerical_features + ['ss_class', 'wt_prop_water', 'mut_prop_water
|
|||
9All XGBoost 0.710526 0.692308 0.729730 0.685714 0.683047)
|
||||
|
||||
|
||||
#%%
|
||||
Model F1_Score Precision Recall Accuracy ROC_AUC
|
||||
0 Logistic Regression 0.757764 0.701149 0.824324 0.721429 0.715192
|
||||
1 Naive Bayes 0.628571 0.666667 0.594595 0.628571 0.630631
|
||||
2 K-Nearest Neighbors 0.666667 0.623529 0.716216 0.621429 0.615684
|
||||
3 SVM 0.766467 0.688172 0.864865 0.721429 0.712735
|
||||
4 MLP 0.726115 0.686747 0.770270 0.692857 0.688165
|
||||
5 Decision Tree 0.647482 0.692308 0.608108 0.650000 0.652539
|
||||
6 Extra Trees 0.760736 0.696629 0.837838 0.721429 0.714373
|
||||
7 Random Forest 0.736196 0.674157 0.810811 0.692857 0.685708
|
||||
8 Random Forest2 0.736196 0.674157 0.810811 0.692857 0.685708
|
||||
9 XGBoost 0.710526 0.692308 0.729730 0.685714 0.683047)
|
Loading…
Add table
Add a link
Reference in a new issue