ML_AI_training/my_data9.py

144 lines
No EOL
4.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 5 12:57:32 2022
@author: tanu
"""
#%%
# data, etc for now comes from my_data6.py and/or my_data5.py
#%% try combinations
#import sys, os
#os.system("imports.py")
def precision(y_true,y_pred):
return precision_score(y_true,y_pred,pos_label = 1)
def recall(y_true,y_pred):
return recall_score(y_true, y_pred, pos_label = 1)
def f1(y_true,y_pred):
return f1_score(y_true, y_pred, pos_label = 1)
#%%
numerical_features_df.shape
categorical_features_df.shape
all_features_df.shape
#%%
target = target1
#target = target3
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df,
target,
test_size = 0.33,
random_state = 42)
X_trainC, X_testC, y_trainC, y_testC = train_test_split(categorical_features_df,
target,
test_size = 0.33,
random_state = 42)
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
target,
test_size = 0.33,
random_state = 42)
#%%
#%%
preprocessor = ColumnTransformer(
transformers=[
('num', MinMaxScaler() , numerical_features_names)
,('cat', OneHotEncoder(), categorical_features_names)
], remainder = 'passthrough')
f = preprocessor.fit(numerical_features_df)
f2 = preprocessor.transform(numerical_features_df)
f3 = preprocessor.fit_transform(numerical_features_df)
(f3==f2).all()
preprocessor.fit_transform(numerical_features_df)
#preprocessor.fit_transform(all_features_df)
#%%
model_log = Pipeline(steps = [
('preprocess', preprocessor)
#,('log_reg', linear_model.LogisticRegression())
,('log_reg', LogisticRegression(
class_weight = 'unbalanced'))
])
model = model_log
#%%
seed = 42
model_rf = Pipeline(steps = [
('preprocess', preprocessor)
,('rf', RandomForestClassifier(
min_samples_leaf=50,
n_estimators=150,
bootstrap=True,
oob_score=True,
n_jobs=-1,
random_state=seed,
max_features='auto'))
])
model = model_rf
#%%
model.fit(X_trainN, y_trainN)
y_pred = model.predict(X_testN)
y_pred
acc = make_scorer(accuracy_score)
prec = make_scorer(precision)
rec = make_scorer(recall)
f1 = make_scorer(f1)
output = cross_validate(model, X_trainN, y_trainN
, scoring = {'acc' : acc
,'prec': prec
,'rec' : rec
,'f1' : f1}
, cv = 10
, return_train_score = False)
pd.DataFrame(output).mean()
#%% Run multiple models using MultClassPipeline
# only good for numerical features as categ features is not supported yet!
t1_res = MultClassPipeline2(X_trainN, X_testN, y_trainN, y_testN, input_df = all_features_df)
t1_res
#%%
# https://machinelearningmastery.com/columntransformer-for-numerical-and-categorical-data/
#Each transformer is a three-element tuple that defines the name of the transformer, the transform to apply, and the column indices to apply it to. For example:
# (Name, Object, Columns)
# Determine categorical and numerical features
numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
# Define the data preparation for the columns
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
col_transform = ColumnTransformer(transformers=t
, remainder='passthrough')
# create pipeline (unlike example above where the col transfer was a preprocess step and it was fit_transformed)
pipeline = Pipeline(steps=[('prep', col_transform)
, ('classifier', LogisticRegression())])
#%% Added this to the MultClassPipeline
tN_res = MultClassPipeline(X_trainN, X_testN, y_trainN, y_testN)
tN_res
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
t2_res
t3_res = MultClassPipeSKF(input_df = numerical_features_df
, y_targetF = target1
, var_type = 'numerical'
, skf_splits = 10)
t3_res
t4_res = MultClassPipeSKF(input_df = all_features_df
, y_targetF = target1
, var_type = 'mixed'
, skf_splits = 10)
t4_res