added prelim run for pnca all models with on-hot encoder multi model pipeline
This commit is contained in:
parent
dd8fd5b8ac
commit
bb8f6f70ba
1 changed files with 87 additions and 0 deletions
87
pnca_results_v1.py
Normal file
87
pnca_results_v1.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Mar 7 15:20:42 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
fit_time 0.008588
|
||||
score_time 0.004460
|
||||
test_acc 0.690148
|
||||
test_prec 0.690868
|
||||
test_rec 0.771250
|
||||
test_f1 0.725441
|
||||
|
||||
# RF
|
||||
fit_time 0.368793
|
||||
score_time 0.110153
|
||||
test_acc 0.672537
|
||||
test_prec 0.664875
|
||||
test_rec 0.790417
|
||||
test_f1 0.720224
|
||||
dtype: float64
|
||||
#%%
|
||||
numerical_features: ['ligand_distance', 'ligand_affinity_change'
|
||||
, 'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2'
|
||||
, 'asa', 'rsa', 'kd_values', 'rd_values'
|
||||
, 'consurf_score', 'snap2_score', 'snap2_accuracy_pc']
|
||||
|
||||
Model F1_Score Precision Recall Accuracy ROC_AUC
|
||||
0 Logistic Regression 0.734177 0.690476 0.783784 0.700000 0.694922
|
||||
1 Naive Bayes 0.467290 0.757576 0.337838 0.592857 0.608313
|
||||
2 K-Nearest Neighbors 0.773006 0.707865 0.851351 0.735714 0.728706
|
||||
3 SVM 0.766467 0.688172 0.864865 0.721429 0.712735
|
||||
4 MLP 0.725000 0.674419 0.783784 0.685714 0.679771
|
||||
5 Decision Tree 0.662069 0.676056 0.648649 0.650000 0.650082
|
||||
6 Extra Trees 0.748387 0.716049 0.783784 0.721429 0.717649
|
||||
7 Random Forest 0.722581 0.691358 0.756757 0.692857 0.688984
|
||||
8 Random Forest2 0.731707 0.666667 0.810811 0.685714 0.678133
|
||||
9 XGBoost 0.692810 0.670886 0.716216 0.664286 0.661138)
|
||||
|
||||
all_features: numerical_features + ['ss_class', 'wt_prop_water', 'mut_prop_water', 'wt_prop_polarity',
|
||||
'mut_prop_polarity', 'wt_calcprop', 'mut_calcprop', 'active_aa_pos']
|
||||
|
||||
Model F1_Score Precision Recall Accuracy ROC_AUC
|
||||
0 Logistic Regression 0.757764 0.701149 0.824324 0.721429 0.715192
|
||||
1 Naive Bayes 0.620690 0.633803 0.608108 0.607143 0.607084
|
||||
2 K-Nearest Neighbors 0.619355 0.592593 0.648649 0.578571 0.574324
|
||||
3 SVM 0.766467 0.688172 0.864865 0.721429 0.712735
|
||||
4 MLP 0.738854 0.698795 0.783784 0.707143 0.702498
|
||||
5 Decision Tree 0.666667 0.701493 0.635135 0.664286 0.666052
|
||||
6 Extra Trees 0.728395 0.670455 0.797297 0.685714 0.678952
|
||||
7 Random Forest 0.763636 0.692308 0.851351 0.721429 0.713554
|
||||
8 Random Forest2 0.746988 0.673913 0.837838 0.700000 0.691646
|
||||
9 XGBoost 0.710526 0.692308 0.729730 0.685714 0.683047)
|
||||
#%%
|
||||
Model F1_Score Precision Recall Accuracy ROC_AUC
|
||||
0Num Logistic Regression 0.734177 0.690476 0.783784 0.700000 0.694922
|
||||
0All Logistic Regression 0.757764 0.701149 0.824324 0.721429 0.715192
|
||||
|
||||
1Num Naive Bayes 0.467290 0.757576 0.337838 0.592857 0.608313
|
||||
1All Naive Bayes 0.620690 0.633803 0.608108 0.607143 0.607084
|
||||
|
||||
2Num K-Nearest Neighbors 0.773006 0.707865 0.851351 0.735714 0.728706 ** 'Num' is better than 'All'
|
||||
2All K-Nearest Neighbors 0.619355 0.592593 0.648649 0.578571 0.574324
|
||||
|
||||
3Num SVM 0.766467 0.688172 0.864865 0.721429 0.712735
|
||||
3All SVM 0.766467 0.688172 0.864865 0.721429 0.712735
|
||||
|
||||
4Num MLP 0.725000 0.674419 0.783784 0.685714 0.679771
|
||||
4All MLP 0.738854 0.698795 0.783784 0.707143 0.702498
|
||||
|
||||
5Num Decision Tree 0.662069 0.676056 0.648649 0.650000 0.650082 ** marginal, equivalent
|
||||
5All Decision Tree 0.666667 0.701493 0.635135 0.664286 0.666052
|
||||
|
||||
6Num Extra Trees 0.748387 0.716049 0.783784 0.721429 0.717649 ** marginal, equivalent
|
||||
6All Extra Trees 0.728395 0.670455 0.797297 0.685714 0.678952
|
||||
|
||||
7Num Random Forest 0.722581 0.691358 0.756757 0.692857 0.688984
|
||||
7All Random Forest 0.763636 0.692308 0.851351 0.721429 0.713554
|
||||
|
||||
8Num Random Forest2 0.731707 0.666667 0.810811 0.685714 0.678133
|
||||
8All Random Forest2 0.746988 0.673913 0.837838 0.700000 0.691646
|
||||
|
||||
9Num XGBoost 0.692810 0.670886 0.716216 0.664286 0.661138)
|
||||
9All XGBoost 0.710526 0.692308 0.729730 0.685714 0.683047)
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue