refactoring code to make it take command line args
This commit is contained in:
parent
b5aa524914
commit
cc9cdbcad5
42 changed files with 456 additions and 7206 deletions
25
README.md
25
README.md
|
@ -1,8 +1,10 @@
|
|||
mCSM Analysis
|
||||
=============
|
||||
|
||||
This repo does mCSM analysis using bash, python and R.
|
||||
|
||||
This contains scripts that does the following:
|
||||
1. mCSM analysis: using bash, python and R
|
||||
2. meta data analysis: using python and R
|
||||
|
||||
Requires an additional 'Data' directory. Batteries not included:-)
|
||||
|
||||
## Assumptions
|
||||
|
@ -19,17 +21,14 @@ subdirs within this repo
|
|||
*.R
|
||||
*.py
|
||||
|
||||
mcsm\_analysis/
|
||||
<drug>/
|
||||
scripts/
|
||||
*.R
|
||||
*.py
|
||||
mcsm/
|
||||
*.sh
|
||||
*.py
|
||||
*.R
|
||||
plotting/
|
||||
*.R
|
||||
mcsm_analysis
|
||||
# <drug>/
|
||||
|
||||
foldx_analysis
|
||||
|
||||
plotting
|
||||
*.R
|
||||
|
||||
```
|
||||
|
||||
More docs here as I write them.
|
||||
|
|
|
@ -1,130 +0,0 @@
|
|||
#########################################################
|
||||
### A) Installing and loading required packages
|
||||
#########################################################
|
||||
#lib_loc = "/usr/local/lib/R/site-library")
|
||||
|
||||
#if (!require("gplots")) {
|
||||
# install.packages("gplots", dependencies = TRUE)
|
||||
# library(gplots)
|
||||
#}
|
||||
|
||||
#if (!require("tidyverse")) {
|
||||
# install.packages("tidyverse", dependencies = TRUE)
|
||||
# library(tidyverse)
|
||||
#}
|
||||
|
||||
if (!require("ggplot2")) {
|
||||
install.packages("ggplot2", dependencies = TRUE)
|
||||
library(ggplot2)
|
||||
}
|
||||
|
||||
if (!require("plotly")) {
|
||||
install.packages("plotly", dependencies = TRUE)
|
||||
library(plotly)
|
||||
}
|
||||
|
||||
if (!require("cowplot")) {
|
||||
install.packages("copwplot", dependencies = TRUE)
|
||||
library(cowplot)
|
||||
}
|
||||
|
||||
if (!require("ggcorrplot")) {
|
||||
install.packages("ggcorrplot", dependencies = TRUE)
|
||||
library(ggcorrplot)
|
||||
}
|
||||
|
||||
if (!require("ggpubr")) {
|
||||
install.packages("ggpubr", dependencies = TRUE)
|
||||
library(ggpubr)
|
||||
}
|
||||
|
||||
if (!require("RColorBrewer")) {
|
||||
install.packages("RColorBrewer", dependencies = TRUE)
|
||||
library(RColorBrewer)
|
||||
}
|
||||
|
||||
if (!require ("GOplot")) {
|
||||
install.packages("GOplot")
|
||||
library(GOplot)
|
||||
}
|
||||
|
||||
if(!require("VennDiagram")) {
|
||||
install.packages("VennDiagram", dependencies = T)
|
||||
library(VennDiagram)
|
||||
}
|
||||
|
||||
if(!require("scales")) {
|
||||
install.packages("scales", dependencies = T)
|
||||
library(scales)
|
||||
}
|
||||
|
||||
if(!require("plotrix")) {
|
||||
install.packages("plotrix", dependencies = T)
|
||||
library(plotrix)
|
||||
}
|
||||
|
||||
if(!require("stats")) {
|
||||
install.packages("stats", dependencies = T)
|
||||
library(stats)
|
||||
}
|
||||
|
||||
if(!require("stats4")) {
|
||||
install.packages("stats4", dependencies = T)
|
||||
library(stats4)
|
||||
}
|
||||
|
||||
if(!require("data.table")) {
|
||||
install.packages("data.table")
|
||||
library(data.table)
|
||||
}
|
||||
|
||||
if (!require("PerformanceAnalytics")){
|
||||
install.packages("PerformanceAnalytics", dependencies = T)
|
||||
library(PerformaceAnalytics)
|
||||
}
|
||||
|
||||
if (!require ("GGally")){
|
||||
install.packages("GGally")
|
||||
library(GGally)
|
||||
}
|
||||
|
||||
if (!require ("corrr")){
|
||||
install.packages("corrr")
|
||||
library(corrr)
|
||||
}
|
||||
|
||||
if (!require ("psych")){
|
||||
install.packages("psych")
|
||||
library(psych)
|
||||
}
|
||||
|
||||
if (!require ("dplyr")){
|
||||
install.packages("dplyr")
|
||||
library(dplyr)
|
||||
}
|
||||
|
||||
if (!require ("compare")){
|
||||
install.packages("compare")
|
||||
library(compare)
|
||||
}
|
||||
|
||||
if (!require ("arsenal")){
|
||||
install.packages("arsenal")
|
||||
library(arsenal)
|
||||
}
|
||||
|
||||
|
||||
####TIDYVERSE
|
||||
# Install
|
||||
#if(!require(devtools)) install.packages("devtools")
|
||||
#devtools::install_github("kassambara/ggcorrplot")
|
||||
|
||||
library(ggcorrplot)
|
||||
|
||||
|
||||
###for PDB files
|
||||
#install.packages("bio3d")
|
||||
if(!require(bio3d)){
|
||||
install.packages("bio3d")
|
||||
library(bio3d)
|
||||
}
|
|
@ -1,157 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#require(data.table)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for pyrazinamide:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA for pyrazinamide:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info); str(my_df$mutation_info)
|
||||
|
||||
# subset df with dr muts only
|
||||
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
|
||||
table(my_df_dr$mutation_info)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Run two times:
|
||||
# uncomment as necessary
|
||||
# 1) for all muts
|
||||
# 2) for dr_muts
|
||||
#===========================
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
|
||||
#================
|
||||
# for ALL muts
|
||||
#================
|
||||
#plot_df = my_df
|
||||
|
||||
#================
|
||||
# for dr muts ONLY
|
||||
#================
|
||||
plot_df = my_df_dr
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
#============================
|
||||
# Plot: Lineage Distribution
|
||||
# x = mcsm_values, y = dist
|
||||
# fill = stability
|
||||
#============================
|
||||
|
||||
table(plot_df$lineage); str(plot_df$lineage)
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
|
||||
# uncomment as necessary
|
||||
df_lin = subset(plot_df, subset = lineage %in% sel_lineages )
|
||||
|
||||
# refactor
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
table(df_lin$lineage) #{RESULT: No of samples within lineage}
|
||||
#lineage1 lineage2 lineage3 lineage4
|
||||
|
||||
length(unique(df_lin$Mutationinformation))
|
||||
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
|
||||
# sanity checks
|
||||
r1 = 2:5 # when merged_df2 used: because there is missing lineages
|
||||
if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) {
|
||||
print ("sanity check passed: numbers match")
|
||||
} else{
|
||||
print("Error!: check your numbers")
|
||||
}
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
df <- df_lin
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(df_lin)
|
||||
|
||||
# COMPARING DISTRIBUTIONS
|
||||
head(df$lineage)
|
||||
df$lineage = as.character(df$lineage)
|
||||
|
||||
lin1 = df[df$lineage == "lineage1",]$ratioDUET
|
||||
lin2 = df[df$lineage == "lineage2",]$ratioDUET
|
||||
lin3 = df[df$lineage == "lineage3",]$ratioDUET
|
||||
lin4 = df[df$lineage == "lineage4",]$ratioDUET
|
||||
|
||||
# ks test
|
||||
ks.test(lin1,lin2)
|
||||
ks.test(lin1,lin3)
|
||||
ks.test(lin1,lin4)
|
||||
|
||||
ks.test(lin2,lin3)
|
||||
ks.test(lin2,lin4)
|
||||
|
||||
ks.test(lin3,lin4)
|
||||
|
||||
|
||||
|
|
@ -1,27 +0,0 @@
|
|||
#########################################################
|
||||
# 1b: Define function: coloured barplot by subgroup
|
||||
# LINK: https://stackoverflow.com/questions/49818271/stacked-barplot-with-colour-gradients-for-each-bar
|
||||
#########################################################
|
||||
|
||||
ColourPalleteMulti <- function(df, group, subgroup){
|
||||
|
||||
# Find how many colour categories to create and the number of colours in each
|
||||
categories <- aggregate(as.formula(paste(subgroup, group, sep="~" ))
|
||||
, df
|
||||
, function(x) length(unique(x)))
|
||||
# return(categories) }
|
||||
|
||||
category.start <- (scales::hue_pal(l = 100)(nrow(categories))) # Set the top of the colour pallete
|
||||
|
||||
category.end <- (scales::hue_pal(l = 40)(nrow(categories))) # set the bottom
|
||||
|
||||
#return(category.start); return(category.end)}
|
||||
|
||||
# Build Colour pallette
|
||||
colours <- unlist(lapply(1:nrow(categories),
|
||||
function(i){
|
||||
colorRampPalette(colors = c(category.start[i]
|
||||
, category.end[i]))(categories[i,2])}))
|
||||
return(colours)
|
||||
}
|
||||
#########################################################
|
|
@ -1,417 +0,0 @@
|
|||
#########################################################
|
||||
# TASK: To combine mcsm and meta data with af and or files
|
||||
# Input csv files:
|
||||
# 1) mcsm normalised and struct params
|
||||
# 2) gene associated meta_data_with_AFandOR
|
||||
|
||||
# Output:
|
||||
# 1) muts with opposite effects on stability
|
||||
# 2) large combined df including NAs for AF, OR,etc
|
||||
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
|
||||
# 3) small combined df including NAs for AF, OR, etc.
|
||||
# Dim: same as mcsm data
|
||||
# 4) large combined df excluding NAs
|
||||
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
|
||||
# 5) small combined df excluding NAs
|
||||
# Dim: dim(#2) - no. of unique NAs - 1
|
||||
# This script is sourced from other .R scripts for plotting
|
||||
#########################################################
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/')
|
||||
getwd()
|
||||
|
||||
##########################################################
|
||||
# Installing and loading required packages
|
||||
##########################################################
|
||||
source('Header_TT.R')
|
||||
#require(data.table)
|
||||
#require(arsenal)
|
||||
#require(compare)
|
||||
#library(tidyverse)
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# data dir
|
||||
#===========
|
||||
datadir = paste0('~/git/Data')
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# infile1: mCSM data
|
||||
#indir = '~/git/Data/pyrazinamide/input/processed/'
|
||||
indir = paste0(datadir, '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename = 'pnca_mcsm_struct_params.csv'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: mCSM output file', ' ', infile) )
|
||||
|
||||
# infile2: gene associated meta data combined with AF and OR
|
||||
#indir: same as above
|
||||
in_filename_comb = paste0(tolower(gene), '_meta_data_with_AFandOR.csv')
|
||||
infile_comb = paste0(indir, '/', in_filename_comb)
|
||||
cat(paste0('Reading infile2: gene associated combined metadata:', infile_comb))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# Uncomment if and when required to output
|
||||
outdir = paste0('~/git/Data', '/', drug, '/', 'output') #same as indir
|
||||
cat('Output dir: ', outdir)
|
||||
#out_filename = paste0(tolower(gene), 'XXX')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
#cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
cat('Reading mcsm_data:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename)
|
||||
|
||||
mcsm_data = read.csv(infile
|
||||
, row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(mcsm_data)
|
||||
, '\nNo. of cols:', ncol(mcsm_data))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename, infile)
|
||||
|
||||
str(mcsm_data)
|
||||
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
|
||||
# spelling Correction 1: DUET
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
|
||||
|
||||
# spelling Correction 2: Ligand
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
|
||||
|
||||
# muts with opposing effects on protomer and ligand stability
|
||||
table(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)
|
||||
changes = mcsm_data[which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome),]
|
||||
|
||||
# sanity check: redundant, but uber cautious!
|
||||
dl_i = which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)
|
||||
ld_i = which(mcsm_data$Lig_outcome != mcsm_data$DUET_outcome)
|
||||
|
||||
cat('Identifying muts with opposite stability effects')
|
||||
if(nrow(changes) == (table(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)[[2]]) & identical(dl_i,ld_i)) {
|
||||
cat('PASS: muts with opposite effects on stability and affinity correctly identified'
|
||||
, '\nNo. of such muts: ', nrow(changes))
|
||||
}else {
|
||||
cat('FAIL: unsuccessful in extracting muts with changed stability effects')
|
||||
}
|
||||
|
||||
#***************************
|
||||
# write file: changed muts
|
||||
out_filename = 'muts_opp_effects.csv'
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat('Writing file for muts with opp effects:'
|
||||
, '\nFilename: ', outfile
|
||||
, '\nPath: ', outdir)
|
||||
|
||||
write.csv(changes, outfile)
|
||||
#****************************
|
||||
# clear variables
|
||||
rm(out_filename, outfile)
|
||||
rm(changes, dl_i, ld_i)
|
||||
|
||||
# count na in each column
|
||||
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
|
||||
|
||||
# sort by Mutationinformation
|
||||
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
|
||||
head(mcsm_data$Mutationinformation)
|
||||
|
||||
orig_col = ncol(mcsm_data)
|
||||
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
|
||||
###########################
|
||||
# 2: Read file: meta data with AFandOR
|
||||
###########################
|
||||
cat('Reading combined meta data and AFandOR file:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename_comb)
|
||||
|
||||
meta_with_afor <- read.csv(infile_comb
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(meta_with_afor)
|
||||
, '\nNo. of cols:', ncol(meta_with_afor))
|
||||
|
||||
# counting NAs in AF, OR cols
|
||||
if (identical(sum(is.na(meta_with_afor$OR))
|
||||
, sum(is.na(meta_with_afor$pvalue))
|
||||
, sum(is.na(meta_with_afor$AF)))){
|
||||
cat('PASS: NA count match for OR, pvalue and AF\n')
|
||||
na_count = sum(is.na(meta_with_afor$AF))
|
||||
cat('No. of NAs: ', sum(is.na(meta_with_afor$OR)))
|
||||
} else{
|
||||
cat('FAIL: NA count mismatch'
|
||||
, '\nNA in OR: ', sum(is.na(meta_with_afor$OR))
|
||||
, '\nNA in pvalue: ', sum(is.na(meta_with_afor$pvalue))
|
||||
, '\nNA in AF:', sum(is.na(meta_with_afor$AF)))
|
||||
}
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_comb, infile_comb)
|
||||
|
||||
str(meta_with_afor)
|
||||
|
||||
# sort by Mutationinformation
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
###########################
|
||||
# 3: merging two dfs: with NA
|
||||
###########################
|
||||
# link col name = 'Mutationinforamtion'
|
||||
head(mcsm_data$Mutationinformation)
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2')
|
||||
|
||||
#########
|
||||
# merge 3a (merged_df2): meta data with mcsm
|
||||
#########
|
||||
merged_df2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.y = T)
|
||||
|
||||
cat('Dim of merged_df2: '
|
||||
, '\nNo. of rows: ', nrow(merged_df2)
|
||||
, '\nNo. of cols: ', ncol(merged_df2))
|
||||
head(merged_df2$Position)
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df2')
|
||||
if(nrow(meta_with_afor) == nrow(merged_df2)){
|
||||
cat('nrow(merged_df2) = nrow (gene associated metadata)'
|
||||
,'\nExpected no. of rows: ',nrow(meta_with_afor)
|
||||
,'\nGot no. of rows: ', nrow(merged_df2))
|
||||
} else{
|
||||
cat('nrow(merged_df2)!= nrow(gene associated metadata)'
|
||||
, '\nExpected no. of rows after merge: ', nrow(meta_with_afor)
|
||||
, '\nGot no. of rows: ', nrow(merged_df2)
|
||||
, '\nFinding discrepancy')
|
||||
merged_muts_u = unique(merged_df2$Mutationinformation)
|
||||
meta_muts_u = unique(meta_with_afor$Mutationinformation)
|
||||
# find the index where it differs
|
||||
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
|
||||
}
|
||||
|
||||
# sort by Position
|
||||
head(merged_df2$Position)
|
||||
merged_df2 = merged_df2[order(merged_df2$Position),]
|
||||
head(merged_df2$Position)
|
||||
|
||||
merged_df2v2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.x = T)
|
||||
#!=!=!=!=!=!=!=!
|
||||
# COMMENT: used all.y since position 186 is not part of the struc,
|
||||
# hence doesn't have a mcsm value
|
||||
# but 186 is associated with mutation
|
||||
#!=!=!=!=!=!=!=!
|
||||
|
||||
# should be False
|
||||
identical(merged_df2, merged_df2v2)
|
||||
table(merged_df2$Position%in%merged_df2v2$Position)
|
||||
|
||||
rm(merged_df2v2)
|
||||
|
||||
#########
|
||||
# merge 3b (merged_df3):remove duplicate mutation information
|
||||
#########
|
||||
cat('Merging dfs without NAs: small df (removing muts with no AF|OR associated)'
|
||||
,'\nCannot trust lineage info from this'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df3')
|
||||
|
||||
#==#=#=#=#=#=#
|
||||
# Cannot trust lineage, country from this df as the same mutation
|
||||
# can have many different lineages
|
||||
# but this should be good for the numerical corr plots
|
||||
#=#=#=#=#=#=#=
|
||||
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df3')
|
||||
if(nrow(mcsm_data) == nrow(merged_df3)){
|
||||
cat('PASS: No. of rows match with mcsm_data'
|
||||
,'\nExpected no. of rows: ', nrow(mcsm_data)
|
||||
,'\nGot no. of rows: ', nrow(merged_df3))
|
||||
} else {
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
, '\nNo. of rows mcsm_data: ', nrow(mcsm_data)
|
||||
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
|
||||
}
|
||||
|
||||
# counting NAs in AF, OR cols in merged_df3
|
||||
# this is becuase mcsm has no AF, OR cols,
|
||||
# so you cannot count NAs
|
||||
if (identical(sum(is.na(merged_df3$OR))
|
||||
, sum(is.na(merged_df3$pvalue))
|
||||
, sum(is.na(merged_df3$AF)))){
|
||||
cat('PASS: NA count match for OR, pvalue and AF\n')
|
||||
na_count_df3 = sum(is.na(merged_df3$AF))
|
||||
cat('No. of NAs: ', sum(is.na(merged_df3$OR)))
|
||||
} else{
|
||||
cat('FAIL: NA count mismatch'
|
||||
, '\nNA in OR: ', sum(is.na(merged_df3$OR))
|
||||
, '\nNA in pvalue: ', sum(is.na(merged_df3$pvalue))
|
||||
, '\nNA in AF:', sum(is.na(merged_df3$AF)))
|
||||
}
|
||||
|
||||
###########################
|
||||
# 4: merging two dfs: without NA
|
||||
###########################
|
||||
#########
|
||||
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
|
||||
#########
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2_comp')
|
||||
|
||||
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
|
||||
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df2_comp')
|
||||
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
|
||||
cat('PASS: No. of rows match'
|
||||
,'\nDim of merged_df2_comp: '
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
, '\nNo. of rows: ', nrow(merged_df2_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df2_comp))
|
||||
}else{
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
,'\nGot no. of rows: ', nrow(merged_df2_comp))
|
||||
}
|
||||
|
||||
#########
|
||||
# merge 4b (merged_df3_comp): remove duplicate mutation information
|
||||
#########
|
||||
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
|
||||
|
||||
cat('Dim of merged_df3_comp: '
|
||||
, '\nNo. of rows: ', nrow(merged_df3_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df3_comp))
|
||||
|
||||
# alternate way of deriving merged_df3_comp
|
||||
foo = merged_df3[!is.na(merged_df3$AF),]
|
||||
# compare dfs: foo and merged_df3_com
|
||||
all.equal(foo, merged_df3)
|
||||
|
||||
summary(comparedf(foo, merged_df3))
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df3_comp')
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3)){
|
||||
cat('NO NAs detected in merged_df3 in AF|OR cols'
|
||||
,'\nNo. of rows are identical: ', nrow(merged_df3))
|
||||
} else{
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
|
||||
cat('PASS: NAs detected in merged_df3 in AF|OR cols'
|
||||
, '\nNo. of NAs: ', na_count_df3
|
||||
, '\nExpected no. of rows in merged_df3_comp: ', nrow(merged_df3) - na_count_df3
|
||||
, '\nGot no. of rows: ', nrow(merged_df3_comp))
|
||||
}
|
||||
}
|
||||
|
||||
#=============== end of combining df
|
||||
#*********************
|
||||
# writing 1 file in the style of a loop: merged_df3
|
||||
# print(output dir)
|
||||
#i = 'merged_df3'
|
||||
#out_filename = paste0(i, '.csv')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
|
||||
#cat('Writing output file: '
|
||||
# ,'\nFilename: ', out_filename
|
||||
# ,'\nPath: ', outdir)
|
||||
|
||||
#template: write.csv(merged_df3, 'merged_df3.csv')
|
||||
#write.csv(get(i), outfile, row.names = FALSE)
|
||||
#cat('Finished writing: ', outfile
|
||||
# , '\nNo. of rows: ', nrow(get(i))
|
||||
# , '\nNo. of cols: ', ncol(get(i)))
|
||||
|
||||
#%% write_output files; all 4 files:
|
||||
outvars = c('merged_df2'
|
||||
, 'merged_df3'
|
||||
, 'merged_df2_comp'
|
||||
, 'merged_df3_comp')
|
||||
|
||||
cat('Writing output files: '
|
||||
, '\nPath:', outdir)
|
||||
|
||||
for (i in outvars){
|
||||
# cat(i, '\n')
|
||||
out_filename = paste0(i, '.csv')
|
||||
# cat(out_filename, '\n')
|
||||
# cat('getting value of variable: ', get(i))
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
# cat('Full output path: ', outfile, '\n')
|
||||
cat('Writing output file:'
|
||||
,'\nFilename: ', out_filename,'\n')
|
||||
write.csv(get(i), outfile, row.names = FALSE)
|
||||
cat('Finished writing: ', outfile
|
||||
, '\nNo. of rows: ', nrow(get(i))
|
||||
, '\nNo. of cols: ', ncol(get(i)), '\n')
|
||||
}
|
||||
|
||||
# alternate way to replace with implicit loop
|
||||
# FIXME
|
||||
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, '/', outvars, '.csv')))
|
||||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
#============================= end of script
|
||||
|
|
@ -1,330 +0,0 @@
|
|||
#########################################################
|
||||
# TASK: To combine mcsm and meta data with af and or
|
||||
# by filtering for distance to ligand (<10Ang).
|
||||
# This script doesn't output anything.
|
||||
# This script is sourced from other .R scripts for plotting ligand plots
|
||||
|
||||
# Input csv files:
|
||||
# 1) mcsm normalised and struct params
|
||||
# 2) gene associated meta_data_with_AFandOR
|
||||
#########################################################
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/')
|
||||
getwd()
|
||||
|
||||
##########################################################
|
||||
# Installing and loading required packages
|
||||
##########################################################
|
||||
|
||||
source('Header_TT.R')
|
||||
#require(data.table)
|
||||
#require(arsenal)
|
||||
#require(compare)
|
||||
#library(tidyverse)
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# infile1: mCSM data
|
||||
#indir = '~/git/Data/pyrazinamide/input/processed/'
|
||||
indir = paste0('~/git/Data', '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename = 'pnca_mcsm_struct_params.csv'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: mCSM output file', ' ', infile) )
|
||||
|
||||
# infile2: gene associated meta data combined with AF and OR
|
||||
#indir: same as above
|
||||
in_filename_comb = paste0(tolower(gene), '_meta_data_with_AFandOR.csv')
|
||||
infile_comb = paste0(indir, '/', in_filename_comb)
|
||||
cat(paste0('Reading infile2: gene associated combined metadata:', infile_comb))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# Uncomment if and when required to output
|
||||
outdir = paste0('~/git/Data', '/', drug, '/', 'output') #same as indir
|
||||
cat('Output dir: ', outdir)
|
||||
#out_filename = paste0(tolower(gene), 'XXX')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
#cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
cat('Reading mcsm_data:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename)
|
||||
|
||||
mcsm_data = read.csv(infile
|
||||
, row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(mcsm_data)
|
||||
, '\nNo. of cols:', ncol(mcsm_data))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename, infile)
|
||||
|
||||
str(mcsm_data)
|
||||
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
|
||||
# spelling Correction 1: DUET
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
|
||||
|
||||
# spelling Correction 2: Ligand
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
|
||||
|
||||
# muts with opposing effects on protomer and ligand stability
|
||||
# excluded from here as it is redundant.
|
||||
# check 'combining_two_df.R' to refer if required.
|
||||
|
||||
########################### !!! only for mcsm_lig
|
||||
# 4: Filter/subset data
|
||||
# Lig plots < 10Ang
|
||||
# Filter the lig plots for Dis_to_lig < 10Ang
|
||||
###########################
|
||||
|
||||
# check range of distances
|
||||
max(mcsm_data$Dis_lig_Ang)
|
||||
min(mcsm_data$Dis_lig_Ang)
|
||||
|
||||
# count
|
||||
table(mcsm_data$Dis_lig_Ang<10)
|
||||
|
||||
# subset data to have only values less than 10 Ang
|
||||
mcsm_data2 = subset(mcsm_data, mcsm_data$Dis_lig_Ang < 10)
|
||||
|
||||
# sanity checks
|
||||
max(mcsm_data2$Dis_lig_Ang)
|
||||
min(mcsm_data2$Dis_lig_Ang)
|
||||
|
||||
# count no of unique positions
|
||||
length(unique(mcsm_data2$Position))
|
||||
|
||||
# count no of unique mutations
|
||||
length(unique(mcsm_data2$Mutationinformation))
|
||||
|
||||
# count Destabilisinga and stabilising
|
||||
table(mcsm_data2$Lig_outcome) #{RESULT: no of mutations within 10Ang}
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(mcsm_data2$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT: so as not to alter the script
|
||||
mcsm_data = mcsm_data2
|
||||
#!!!!!!!!!!!!!!!!!!!!!
|
||||
# clear variables
|
||||
rm(mcsm_data2)
|
||||
|
||||
# count na in each column
|
||||
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
|
||||
|
||||
# sort by Mutationinformation
|
||||
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
|
||||
head(mcsm_data$Mutationinformation)
|
||||
|
||||
orig_col = ncol(mcsm_data)
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
|
||||
###########################
|
||||
# 2: Read file: meta data with AFandOR
|
||||
###########################
|
||||
cat('Reading combined meta data and AFandOR file:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename_comb)
|
||||
|
||||
meta_with_afor <- read.csv(infile_comb
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(meta_with_afor)
|
||||
, '\nNo. of cols:', ncol(meta_with_afor))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_comb, infile_comb)
|
||||
|
||||
str(meta_with_afor)
|
||||
|
||||
# sort by Mutationinformation
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
###########################
|
||||
# 3: merging two dfs: with NA
|
||||
###########################
|
||||
# link col name = 'Mutationinforamtion'
|
||||
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2')
|
||||
|
||||
head(mcsm_data$Mutationinformation)
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
#########
|
||||
# merge 3a: meta data with mcsm
|
||||
#########
|
||||
merged_df2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.y = T)
|
||||
|
||||
cat('Dim of merged_df2: '
|
||||
, '\nNo. of rows: ', nrow(merged_df2)
|
||||
, '\nNo. of cols: ', ncol(merged_df2))
|
||||
head(merged_df2$Position)
|
||||
|
||||
if(nrow(meta_with_afor) == nrow(merged_df2)){
|
||||
cat('nrow(merged_df2) = nrow (gene associated metadata)'
|
||||
,'\nExpected no. of rows: ',nrow(meta_with_afor)
|
||||
,'\nGot no. of rows: ', nrow(merged_df2))
|
||||
} else{
|
||||
cat('nrow(merged_df2)!= nrow(gene associated metadata)'
|
||||
, '\nExpected no. of rows after merge: ', nrow(meta_with_afor)
|
||||
, '\nGot no. of rows: ', nrow(merged_df2)
|
||||
, '\nFinding discrepancy')
|
||||
merged_muts_u = unique(merged_df2$Mutationinformation)
|
||||
meta_muts_u = unique(meta_with_afor$Mutationinformation)
|
||||
# find the index where it differs
|
||||
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
|
||||
}
|
||||
|
||||
# sort by Position
|
||||
head(merged_df2$Position)
|
||||
merged_df2 = merged_df2[order(merged_df2$Position),]
|
||||
head(merged_df2$Position)
|
||||
|
||||
merged_df2v2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.x = T)
|
||||
#!=!=!=!=!=!=!=!
|
||||
# COMMENT: used all.y since position 186 is not part of the struc,
|
||||
# hence doesn't have a mcsm value
|
||||
# but 186 is associated with mutation
|
||||
#!=!=!=!=!=!=!=!
|
||||
|
||||
# should be False
|
||||
identical(merged_df2, merged_df2v2)
|
||||
table(merged_df2$Position%in%merged_df2v2$Position)
|
||||
|
||||
rm(merged_df2v2)
|
||||
|
||||
#########
|
||||
# merge 3b:remove duplicate mutation information
|
||||
#########
|
||||
cat('Merging dfs with NAs: small df (removing duplicate muts)'
|
||||
,'\nCannot trust lineage info from this'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df3')
|
||||
|
||||
#==#=#=#=#=#=#
|
||||
# Cannot trust lineage, country from this df as the same mutation
|
||||
# can have many different lineages
|
||||
# but this should be good for the numerical corr plots
|
||||
#=#=#=#=#=#=#=
|
||||
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
|
||||
|
||||
# sanity checks
|
||||
# nrows of merged_df3 should be the same as the nrows of mcsm_data
|
||||
if(nrow(mcsm_data) == nrow(merged_df3)){
|
||||
cat('PASS: No. of rows match with mcsm_data'
|
||||
,'\nExpected no. of rows: ', nrow(mcsm_data)
|
||||
,'\nGot no. of rows: ', nrow(merged_df3))
|
||||
} else {
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
, '\nNo. of rows mcsm_data: ', nrow(mcsm_data)
|
||||
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
|
||||
}
|
||||
|
||||
###########################
|
||||
# 4: merging two dfs: without NA
|
||||
###########################
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2_comp')
|
||||
|
||||
#########
|
||||
# merge 4a: same as merge 1 but excluding NA
|
||||
#########
|
||||
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
|
||||
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
|
||||
cat('Dim of merged_df2_comp: '
|
||||
, '\nNo. of rows: ', nrow(merged_df2_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df2_comp))
|
||||
|
||||
#########
|
||||
# merge 4b: remove duplicate mutation information
|
||||
#########
|
||||
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
|
||||
|
||||
cat('Dim of merged_df3_comp: '
|
||||
, '\nNo. of rows: ', nrow(merged_df3_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df3_comp))
|
||||
|
||||
# alternate way of deriving merged_df3_comp
|
||||
foo = merged_df3[!is.na(merged_df3$AF),]
|
||||
# compare dfs: foo and merged_df3_com
|
||||
all.equal(foo, merged_df3)
|
||||
|
||||
summary(comparedf(foo, merged_df3))
|
||||
|
||||
#=============== end of combining df
|
||||
#*********************
|
||||
# write_output files
|
||||
# Not required as this is a subset of the combining_two_df.R
|
||||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
#============================= end of script
|
||||
|
|
@ -1,215 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Jun 25 08:46:36 2019
|
||||
|
||||
@author: tanushree
|
||||
"""
|
||||
############################################
|
||||
# load libraries
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from Bio import SeqIO
|
||||
############################################
|
||||
#********************************************************************
|
||||
# TASK: Read in fasta files and create mutant sequences akin to a MSA,
|
||||
# to allow generation of logo plots
|
||||
|
||||
# Requirements:
|
||||
# input: Fasta file of protein/target for which mut seqs will be created
|
||||
# path: "Data/<drug>/input/original/<filename>"
|
||||
# output: MSA for mutant sequences
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
#***********************************************************************
|
||||
#%%
|
||||
# specify input and output variables
|
||||
homedir = os.path.expanduser('~')
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# fasta file
|
||||
#############
|
||||
indir = 'git/Data/pyrazinamide/input/original'
|
||||
in_filename_fasta = "3pl1.fasta.txt"
|
||||
infile_fasta = homedir + '/' + indir + '/' + in_filename_fasta
|
||||
print(infile_fasta)
|
||||
|
||||
#############
|
||||
# meta data
|
||||
#############
|
||||
# FIXME when you change the dir struc
|
||||
inpath_p = "git/Data/pyrazinamide/input/processed"
|
||||
in_filename_meta_data = "meta_data_with_AFandOR.csv"
|
||||
infile_meta_data = homedir + '/' + inpath_p + '/' + in_filename_meta_data
|
||||
print("Input file is:", infile_meta_data)
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir = 'git/Data/pyrazinamide/output'
|
||||
# filenames in respective sections
|
||||
|
||||
################## end of variable assignment for input and output files
|
||||
#%%
|
||||
#==========
|
||||
# read files
|
||||
#==========
|
||||
|
||||
#############
|
||||
# fasta file
|
||||
#############
|
||||
my_fasta_o = str()
|
||||
for seq_record in SeqIO.parse(infile_fasta, "fasta"):
|
||||
my_seq = seq_record.seq
|
||||
my_fasta_o = str(my_seq) #convert to a string
|
||||
print(my_fasta_o)
|
||||
print(len(my_fasta_o))
|
||||
# print( type(my_fasta) )
|
||||
|
||||
# remove non_struc positions from fasta
|
||||
def remove_char(str, n):
|
||||
first_part = str[:n]
|
||||
last_part = str[n+1:]
|
||||
return first_part + last_part
|
||||
#print(remove_char('Python', 0))
|
||||
|
||||
ns_pos_o = 186
|
||||
offset = 1 # 0 based indexing
|
||||
ns_pos = ns_pos_o - offset
|
||||
my_fasta = remove_char(my_fasta_o, ns_pos)
|
||||
print("orig length:", len(my_fasta_o))
|
||||
print("new length:", len(my_fasta))
|
||||
|
||||
#############
|
||||
# SNP info and no of MSA to generate
|
||||
#############
|
||||
# read mutant_info file and extract cols with positions and mutant_info
|
||||
# This should be all samples with pncA muts
|
||||
#my_data = pd.read_csv('mcsm_complex1_normalised.csv')
|
||||
my_data = pd.read_csv(infile_meta_data)
|
||||
list(my_data.columns)
|
||||
#my_data['OR'].value_counts()
|
||||
#my_data['OR'].isna().sum()
|
||||
|
||||
#FIXME: You need a better way to identify this
|
||||
# ideally this file should not contain any non_struc pos
|
||||
# remove positions not in the structure
|
||||
my_data = my_data[my_data.position != ns_pos_o]
|
||||
|
||||
# if multiple positions, then try the example below;
|
||||
# https://stackoverflow.com/questions/29017525/deleting-rows-based-on-multiple-conditions-python-pandas
|
||||
#df = df[(df.one > 0) | (df.two > 0) | (df.three > 0) & (df.four < 1)]
|
||||
|
||||
# count mutations per sample
|
||||
mut_info = my_data[['id', 'Mutationinformation', 'wild_type', 'position', 'mutant_type']]
|
||||
|
||||
# test
|
||||
foo = mut_info[mut_info.Mutationinformation.str.contains('C72Y')]
|
||||
|
||||
foo = mut_info.pivot_table(values = ['Mutationinformation']
|
||||
, index = ['Mutationinformation', 'id']
|
||||
# , columns =
|
||||
, aggfunc = 'count')
|
||||
|
||||
# table
|
||||
foo_tab = mut_info.pivot_table(values = ['Mutationinformation']
|
||||
# , index = ['Mutationinformation']
|
||||
, columns = ['id', 'Mutationinformation']
|
||||
, aggfunc = 'count'
|
||||
# , margins = True)
|
||||
)
|
||||
foo_tab.stack('id')
|
||||
|
||||
mut_info.to_csv('mutinfo.csv')
|
||||
|
||||
mut_info1 = my_data[['position', 'mutant_type']]
|
||||
#%%
|
||||
################
|
||||
# data cleaning
|
||||
################
|
||||
# extract only those positions that have a frequency count of pos>1
|
||||
###mut_info['freq_pos'] = mut_info.groupby('Position').count()#### dodgy
|
||||
|
||||
# add a column of frequency for each position
|
||||
#mut_info1['freq_pos'] = mut_info1.groupby('position')['position'].transform('count')
|
||||
mut_info1['freq_pos'] = mut_info1.position.map(mut_info1.position.value_counts())
|
||||
|
||||
# sort by position
|
||||
mut_info2 = mut_info1.sort_values(by=['position'])
|
||||
|
||||
# count how many pos have freq 1 as you will need to exclude those
|
||||
mutfreq1_count = mut_info2[mut_info2.freq_pos == 1].sum().freq_pos
|
||||
|
||||
# extract entries with freq_pos>1
|
||||
# should be 3093-211 = 3072
|
||||
mut_info3 = mut_info2.loc[mut_info2['freq_pos'] >1] #3072
|
||||
print("orig length:", len(mut_info1))
|
||||
print("No. of excluded values:", mutfreq1_count)
|
||||
print("new length:", len(mut_info3))
|
||||
# sanity check
|
||||
if ( (len(mut_info1) - mutfreq1_count) == len(mut_info3) ):
|
||||
print("Sanity check passed: Filtered data correctly")
|
||||
else:
|
||||
print("Error: Debug you code")
|
||||
|
||||
# reset index to allow iteration !!!!!!!!!! IMPORTANT
|
||||
mut_info = mut_info3.reset_index(drop = True)
|
||||
|
||||
##del(mut_info1, mut_info2, mut_info3, my_data)
|
||||
|
||||
###################
|
||||
# generate mut seqs
|
||||
###################
|
||||
mut_seqsL = [] * len(mut_info)
|
||||
|
||||
# iterate
|
||||
for i, pos in enumerate(mut_info['position']):
|
||||
my_fastaL = list(my_fasta)
|
||||
mut = mut_info['mutant_type'][i]
|
||||
offset_pos = pos-1
|
||||
|
||||
print('1-index:', pos, '0-index cur:', offset_pos, my_fastaL[offset_pos], 'mut:', mut)
|
||||
my_fastaL[offset_pos] = mut
|
||||
print('1-index:', pos, '0-index new:', offset_pos, my_fastaL[offset_pos], 'mut:', mut)
|
||||
|
||||
mut_seq = "".join(my_fastaL)
|
||||
# print(mut_seq + '\n')
|
||||
print('original:', my_fasta, ',', 'replaced:', my_fasta[offset_pos], 'at', pos, 'with', mut, mut_seq)
|
||||
mut_seqsL.append(mut_seq)
|
||||
|
||||
|
||||
###############
|
||||
# sanity check
|
||||
################
|
||||
len_orig = len(my_fasta)
|
||||
# checking if all the mutant sequences have the same length as the original fasta file sequence
|
||||
for seqs in mut_seqsL:
|
||||
# print(seqs)
|
||||
# print(len(seqs))
|
||||
if len(seqs) != len_orig:
|
||||
print('sequence lengths mismatch' +'\n', 'mutant seq length:', len(seqs), 'vs original seq length:', len_orig)
|
||||
else:
|
||||
print('**Hooray** Length of mutant and original sequences match')
|
||||
|
||||
del(i, len_orig, mut, mut_seq, my_fastaL, offset_pos, pos, seqs)
|
||||
|
||||
############
|
||||
# write file
|
||||
############
|
||||
#filepath = homedir +'/git/LSHTM_Y1_PNCA/combined_v3/logo_plot/snp_seqsfile'
|
||||
#filepath = homedir + '/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Data/gene_msa.txt'
|
||||
print(outdir)
|
||||
out_filename = "gene_msa.txt"
|
||||
outfile_gene = homedir + '/' + outdir + '/' + out_filename
|
||||
print(outfile_gene)
|
||||
|
||||
with open(outfile_gene, 'w') as file_handler:
|
||||
for item in mut_seqsL:
|
||||
file_handler.write("{}\n".format(item))
|
||||
|
||||
#R = "\n".join(mut_seqsL)
|
||||
#f = open('Columns.csv','w')
|
||||
#f.write(R)
|
||||
#f.close()
|
|
@ -1,9 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# run all bash scripts for mcsm
|
||||
|
||||
#./step0_check_duplicate_SNPs.sh
|
||||
#./step1_lig_output_urls.sh
|
||||
./step2_lig_results.sh
|
||||
./step3a_results_format_interim.sh
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
#*************************************
|
||||
# need to be in the correct directory
|
||||
#*************************************
|
||||
##: comments for code
|
||||
#: commented out code
|
||||
|
||||
#**********************************************************************
|
||||
# TASK: Text file containing a list of SNPs; SNP in the format(C2E)
|
||||
# per line. Sort by unique, which automatically removes duplicates.
|
||||
# sace file in current directory
|
||||
#**********************************************************************
|
||||
infile="${HOME}/git/Data/pyrazinamide/input/processed/pnca_mis_SNPs_v2.csv"
|
||||
outfile="${HOME}/git/Data/pyrazinamide/input/processed/pnca_mis_SNPs_v2_unique.csv"
|
||||
|
||||
# sort unique entries and output to current directory
|
||||
sort -u ${infile} > ${outfile}
|
||||
|
||||
# count no. of unique snps mCSM will run on
|
||||
count=$(wc -l < ${outfile})
|
||||
|
||||
# print to console no. of unique snps mCSM will run on
|
||||
echo "${count} unique mutations for mCSM to run on"
|
||||
|
|
@ -1,104 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
#**********************************************************************
|
||||
# TASK: submit requests using curl: HANDLE redirects and refresh url.
|
||||
# Iterate over mutation file and write/append result urls to a file
|
||||
# Mutation file must have one mutation (format A1B) per line
|
||||
# Requirements
|
||||
# input: mutation list (format: A1B), complex struc: (pdb format)
|
||||
# mutation: outFile from step0, one unique mutation/line, no chain ID
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
# structure: pdb file of drug-target complex
|
||||
# path: "Data/<drug>/input/structure/<filename>"
|
||||
# output: should be n urls (n=no. of unique mutations in file)
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
|
||||
# NOTE: these are just result urls, not actual values for results
|
||||
#**********************************************************************
|
||||
############# specify variables for input and output paths and filenames
|
||||
homedir="${HOME}"
|
||||
#echo Home directory is ${homedir}
|
||||
basedir="/git/Data/pyrazinamide/input"
|
||||
|
||||
# input
|
||||
inpath_mut="/processed"
|
||||
in_filename_mut="/pnca_mis_SNPs_v2_unique.csv"
|
||||
infile_mut="${homedir}${basedir}${inpath_mut}${in_filename_mut}"
|
||||
echo Input Mut filename: ${infile_mut}
|
||||
|
||||
inpath_struc="/structure"
|
||||
in_filename_struc="/complex1_no_water.pdb"
|
||||
infile_struc="${homedir}${basedir}${inpath_struc}${in_filename_struc}"
|
||||
echo Input Struc filename: ${infile_struc}
|
||||
|
||||
# output
|
||||
outpath="/processed"
|
||||
out_filename="/complex1_result_url.txt"
|
||||
outfile="${homedir}${basedir}${outpath}${out_filename}"
|
||||
#echo Output filename: ${outfile}
|
||||
################## end of variable assignment for input and output files
|
||||
|
||||
# iterate over mutation file (infile_mut); line by line and
|
||||
# submit query using curl
|
||||
# some useful messages
|
||||
echo -n -e "Processing $(wc -l < ${infile_mut}) entries from ${infile_mut}\n"
|
||||
COUNT=0
|
||||
while read -r line; do
|
||||
((COUNT++))
|
||||
mutation="${line}"
|
||||
# echo "${mutation}"
|
||||
#pdb='../Data/complex1_no_water.pdb'
|
||||
pdb="${infile_struc}"
|
||||
mutation="${mutation}"
|
||||
chain="A"
|
||||
lig_id="PZA"
|
||||
affin_wt="0.99"
|
||||
host="http://biosig.unimelb.edu.au"
|
||||
call_url="/mcsm_lig/prediction"
|
||||
|
||||
#=========================================
|
||||
##html field_names names required for curl
|
||||
##complex_field:wild=@
|
||||
##mutation_field:mutation=@
|
||||
##chain_field:chain=@
|
||||
##ligand_field:lig_id@
|
||||
##energy_field:affin_wt
|
||||
#=========================================
|
||||
refresh_url=$(curl -L \
|
||||
-sS \
|
||||
-F "wild=@${pdb}" \
|
||||
-F "mutation=${mutation}" \
|
||||
-F "chain=${chain}" \
|
||||
-F "lig_id=${lig_id}" \
|
||||
-F "affin_wt=${affin_wt}" \
|
||||
${host}${call_url} | grep "http-equiv")
|
||||
|
||||
#echo Refresh URL: $refresh_url
|
||||
#echo Host+Refresh: ${host}${refresh_url}
|
||||
|
||||
# use regex to extract the relevant bit from the refresh url
|
||||
# regex:sed -r 's/.*(\/mcsm.*)".*$/\1/g'
|
||||
|
||||
# Now build: result url using host and refresh url and write the urls to a file
|
||||
result_url=$(echo $refresh_url | sed -r 's/.*(\/mcsm.*)".*$/\1/g')
|
||||
sleep 10
|
||||
|
||||
echo -e "${mutation} : processing entry ${COUNT}/$(wc -l < ${infile_mut})..."
|
||||
|
||||
# create output file with the added number of muts from file
|
||||
# after much thought, bad idea as less generic!
|
||||
#echo -e "${host}${result_url}" >> ../Results/$(wc -l < ${filename})_complex1_result_url.txt
|
||||
echo -e "${host}${result_url}" >> ${outfile}
|
||||
#echo -n '.'
|
||||
done < "${infile_mut}"
|
||||
|
||||
#FIXME: stop executing if error else these echo statements are misleading!
|
||||
echo
|
||||
echo Output filename: ${outfile}
|
||||
echo
|
||||
echo Number of urls saved: $(wc -l < ${infile_mut})
|
||||
echo
|
||||
echo "Processing Complete"
|
||||
|
||||
# end of submitting query, receiving result url and storing results url in a file
|
||||
|
|
@ -1,76 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
#********************************************************************
|
||||
# TASK: submit result urls and fetch actual results using curl
|
||||
# Iterate over each result url from the output of step1 stored in processed/
|
||||
# Use curl to fetch results and extract relevant sections using hxtools
|
||||
# and store these in another file in processed/
|
||||
|
||||
# Requirements:
|
||||
# input: output of step1, file containing result urls
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
# output: name of the file where extracted results will be stored
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
|
||||
# Optional: can make these command line args you pass when calling script
|
||||
# by uncommenting code as indicated
|
||||
#*********************************************************************
|
||||
############################# uncomment: to make it command line args
|
||||
#if [ "$#" -ne 2 ]; then
|
||||
#if [ -Z $1 ]; then
|
||||
# echo "
|
||||
# Please provide both Input and Output files.
|
||||
|
||||
# Usage: batch_read_urls.sh INFILE OUTFILE
|
||||
# "
|
||||
# exit 1
|
||||
#fi
|
||||
|
||||
# First argument: Input File
|
||||
# Second argument: Output File
|
||||
#infile=$1
|
||||
#outfile=$2
|
||||
############################ end of code block to make command line args
|
||||
|
||||
############# specify variables for input and output paths and filenames
|
||||
homedir="${HOME}"
|
||||
#echo Home directory is ${homedir}
|
||||
basedir="/git/Data/pyrazinamide/input"
|
||||
|
||||
# input
|
||||
inpath="/processed"
|
||||
in_filename="/complex1_result_url.txt"
|
||||
infile="${homedir}${basedir}${inpath}${in_filename}"
|
||||
echo Input Mut filename: ${infile}
|
||||
|
||||
# output
|
||||
outpath="/processed"
|
||||
out_filename="/complex1_output_MASTER.txt"
|
||||
outfile="${homedir}${basedir}${outpath}${out_filename}"
|
||||
echo Output filename: ${outfile}
|
||||
################## end of variable assignment for input and output files
|
||||
|
||||
# Iterate over each result url, and extract results using hxtools
|
||||
# which nicely cleans and formats html
|
||||
echo -n "Processing $(wc -l < ${infile}) entries from ${infile}"
|
||||
echo
|
||||
COUNT=0
|
||||
while read -r line; do
|
||||
#COUNT=$(($COUNT+1))
|
||||
((COUNT++))
|
||||
curl --silent ${line} \
|
||||
| hxnormalize -x \
|
||||
| hxselect -c div.span4 \
|
||||
| hxselect -c div.well \
|
||||
| sed -r -e 's/<[^>]*>//g' \
|
||||
| sed -re 's/ +//g' \
|
||||
>> ${outfile}
|
||||
#| tee -a ${outfile}
|
||||
# echo -n '.'
|
||||
echo -e "Processing entry ${COUNT}/$(wc -l < ${infile})..."
|
||||
|
||||
done < "${infile}"
|
||||
|
||||
echo
|
||||
echo "Processing Complete"
|
||||
|
|
@ -1,74 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
#********************************************************************
|
||||
# TASK: Intermediate results processing
|
||||
# output file has a convenient delimiter of ":" that can be used to
|
||||
# format the file into two columns (col1: field_desc and col2: values)
|
||||
# However the section "PredictedAffinityChange:...." and
|
||||
# "DUETstabilitychange:.." are split over multiple lines and
|
||||
# prevent this from happening. Additionally there are other empty lines
|
||||
# that need to be omiited. In order ensure these sections are not split
|
||||
# over multiple lines, this script is written.
|
||||
|
||||
# Requirements:
|
||||
# input: output of step2, file containing mcsm results as described above
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
# output: replaces file in place.
|
||||
# Therefore first create a copy of the input file
|
||||
# but rename it to remove the word "MASTER" and add the word "processed"
|
||||
# file format: .txt
|
||||
|
||||
# NOTE: This replaces the file in place!
|
||||
# the output is a txt file with no newlines and formatting
|
||||
# to have the following format "<colname><:><value>
|
||||
#***********************************************************************
|
||||
############# specify variables for input and output paths and filenames
|
||||
homedir="${HOME}"
|
||||
basedir="/git/Data/pyrazinamide/input"
|
||||
|
||||
inpath="/processed"
|
||||
|
||||
# Create input file: copy and rename output file of step2
|
||||
oldfile="${homedir}${basedir}${inpath}/complex1_output_MASTER.txt"
|
||||
newfile="${homedir}${basedir}${inpath}/complex1_output_processed.txt"
|
||||
cp $oldfile $newfile
|
||||
|
||||
echo Input filename is ${oldfile}
|
||||
echo
|
||||
echo Output i.e copied filename is ${newfile}
|
||||
|
||||
# output: No output perse
|
||||
# Replacement in place inside the copied file
|
||||
################## end of variable assignment for input and output files
|
||||
|
||||
#sed -i '/PredictedAffinityChange:/ { N; N; N; N; s/\n//g;}' ${newfile} \
|
||||
# | sed -i '/DUETstabilitychange:/ {x; N; N; s/\n//g; p;d;}' ${newfile}
|
||||
|
||||
# Outputs records separated by a newline, that look something like this:
|
||||
# PredictedAffinityChange:-2.2log(affinityfoldchange)-Destabilizing
|
||||
# Mutationinformation:
|
||||
# Wild-type:L
|
||||
# Position:4
|
||||
# Mutant-type:W
|
||||
# Chain:A
|
||||
# LigandID:PZA
|
||||
# Distancetoligand:15.911Å
|
||||
# DUETstabilitychange:-2.169Kcal/mol
|
||||
#
|
||||
# PredictedAffinityChange:-1.538log(affinityfoldchange)-Destabilizing
|
||||
# (...etc)
|
||||
|
||||
# This script brings everything in a convenient format for further processing in python.
|
||||
sed -i '/PredictedAffinityChange/ {
|
||||
N
|
||||
N
|
||||
N
|
||||
N
|
||||
s/\n//g
|
||||
}
|
||||
/DUETstabilitychange:/ {
|
||||
N
|
||||
N
|
||||
s/\n//g
|
||||
}
|
||||
/^$/d' ${newfile}
|
|
@ -1,63 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
###################
|
||||
# load libraries
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
from collections import defaultdict
|
||||
####################
|
||||
|
||||
#********************************************************************
|
||||
# TASK: Formatting results with nice colnames
|
||||
# step3a processed the mcsm results to remove all newlines and
|
||||
# brought data in a format where the delimiter ":" splits
|
||||
# data into a convenient format of "colname": "value".
|
||||
# this script formats the data and outputs a df with each row
|
||||
# as a mutation and its corresponding mcsm_values
|
||||
|
||||
# Requirements:
|
||||
# input: output of step3a, file containing "..._output_processed.txt"
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
# output: formatted .csv file
|
||||
# path: "Data/<drug>/input/processed/<filename>"
|
||||
#***********************************************************************
|
||||
############# specify variables for input and output paths and filenames
|
||||
homedir = os.path.expanduser('~') # spyder/python doesn't recognise tilde
|
||||
basedir = "/git/Data/pyrazinamide/input"
|
||||
|
||||
# input
|
||||
inpath = "/processed"
|
||||
in_filename = "/complex1_output_processed.txt"
|
||||
infile = homedir + basedir + inpath + in_filename
|
||||
print("Input file is:", infile)
|
||||
|
||||
# output
|
||||
outpath = "/processed"
|
||||
out_filename = "/complex1_formatted_results.csv"
|
||||
outfile = homedir + basedir + outpath + out_filename
|
||||
print("Output file is:", outfile)
|
||||
################## end of variable assignment for input and output files
|
||||
|
||||
outCols=[
|
||||
'PredictedAffinityChange',
|
||||
'Mutationinformation',
|
||||
'Wild-type',
|
||||
'Position',
|
||||
'Mutant-type',
|
||||
'Chain',
|
||||
'LigandID',
|
||||
'Distancetoligand',
|
||||
'DUETstabilitychange'
|
||||
]
|
||||
|
||||
lines = [line.rstrip('\n') for line in open(infile)]
|
||||
|
||||
outputs = defaultdict(list)
|
||||
|
||||
for item in lines:
|
||||
col, val = item.split(':')
|
||||
outputs[col].append(val)
|
||||
|
||||
dfOut=pd.DataFrame(outputs)
|
||||
|
||||
pd.DataFrame.to_csv(dfOut, outfile, columns=outCols)
|
|
@ -1,230 +0,0 @@
|
|||
getwd()
|
||||
#setwd("~/git/LSHTM_analysis/mcsm_complex1/Results")
|
||||
getwd()
|
||||
|
||||
#=======================================================
|
||||
# TASK: read formatted_results_df.csv to complete
|
||||
# missing info, adding DUET categories, assigning
|
||||
# meaningful colnames, etc.
|
||||
|
||||
# Requirements:
|
||||
# input: output of step3b, python processing,
|
||||
# path: Data/<drug>/input/processed/<filename>"
|
||||
# output: NO output as the next scripts refers to this
|
||||
# for yet more processing
|
||||
#=======================================================
|
||||
|
||||
# specify variables for input and output paths and filenames
|
||||
homedir = "~"
|
||||
basedir = "/git/Data/pyrazinamide/input"
|
||||
inpath = "/processed"
|
||||
in_filename = "/complex1_formatted_results.csv"
|
||||
infile = paste0(homedir, basedir, inpath, in_filename)
|
||||
print(paste0("Input file is:", infile))
|
||||
|
||||
#======================================================
|
||||
#TASK: To tidy the columns so you can generate figures
|
||||
#=======================================================
|
||||
####################
|
||||
#### read file #####: this will be the output from python script (csv file)
|
||||
####################
|
||||
data = read.csv(infile
|
||||
, header = T
|
||||
, stringsAsFactors = FALSE)
|
||||
dim(data)
|
||||
str(data)
|
||||
|
||||
# clear variables
|
||||
rm(homedir, basedir, inpath, in_filename, infile)
|
||||
|
||||
###########################
|
||||
##### Data processing #####
|
||||
###########################
|
||||
|
||||
# populate mutation information columns as currently it is empty
|
||||
head(data$Mutationinformation)
|
||||
tail(data$Mutationinformation)
|
||||
|
||||
# should not be blank: create muation information
|
||||
data$Mutationinformation = paste0(data$Wild.type, data$Position, data$Mutant.type)
|
||||
|
||||
head(data$Mutationinformation)
|
||||
tail(data$Mutationinformation)
|
||||
#write.csv(data, 'test.csv')
|
||||
|
||||
##########################################
|
||||
# Remove duplicate SNPs as a sanity check
|
||||
##########################################
|
||||
# very important
|
||||
table(duplicated(data$Mutationinformation))
|
||||
|
||||
# extract duplicated entries
|
||||
dups = data[duplicated(data$Mutationinformation),] #0
|
||||
|
||||
# No of dups should match with the no. of TRUE in the above table
|
||||
#u_dups = unique(dups$Mutationinformation) #10
|
||||
sum( table(dups$Mutationinformation) )
|
||||
|
||||
#***************************************************************
|
||||
# select non-duplicated SNPs and create a new df
|
||||
df = data[!duplicated(data$Mutationinformation),]
|
||||
#***************************************************************
|
||||
# sanity check
|
||||
u = unique(df$Mutationinformation)
|
||||
u2 = unique(data$Mutationinformation)
|
||||
table(u%in%u2)
|
||||
|
||||
# should all be 1
|
||||
sum(table(df$Mutationinformation) == 1)
|
||||
|
||||
# sort df by Position
|
||||
# MANUAL CHECKPOINT:
|
||||
#foo <- df[order(df$Position),]
|
||||
#df <- df[order(df$Position),]
|
||||
|
||||
# clear variables
|
||||
rm(u, u2, dups)
|
||||
|
||||
####################
|
||||
#### give meaningful colnames to reflect units to enable correct data type
|
||||
####################
|
||||
|
||||
#=======
|
||||
#STEP 1
|
||||
#========
|
||||
# make a copy of the PredictedAffinityColumn and call it Lig_outcome
|
||||
df$Lig_outcome = df$PredictedAffinityChange
|
||||
|
||||
#make Predicted...column numeric and outcome column categorical
|
||||
head(df$PredictedAffinityChange)
|
||||
df$PredictedAffinityChange = gsub("log.*"
|
||||
, ""
|
||||
, df$PredictedAffinityChange)
|
||||
|
||||
# sanity checks
|
||||
head(df$PredictedAffinityChange)
|
||||
|
||||
# should be numeric, check and if not make it numeric
|
||||
is.numeric( df$PredictedAffinityChange )
|
||||
|
||||
# change to numeric
|
||||
df$PredictedAffinityChange = as.numeric(df$PredictedAffinityChange)
|
||||
|
||||
# should be TRUE
|
||||
is.numeric( df$PredictedAffinityChange )
|
||||
|
||||
# change the column name to indicate units
|
||||
n = which(colnames(df) == "PredictedAffinityChange"); n
|
||||
colnames(df)[n] = "PredAffLog"
|
||||
colnames(df)[n]
|
||||
|
||||
#========
|
||||
#STEP 2
|
||||
#========
|
||||
# make Lig_outcome column categorical showing effect of mutation
|
||||
head(df$Lig_outcome)
|
||||
df$Lig_outcome = gsub("^.*-"
|
||||
, "",
|
||||
df$Lig_outcome)
|
||||
# sanity checks
|
||||
head(df$Lig_outcome)
|
||||
|
||||
# should be factor, check and if not change it to factor
|
||||
is.factor(df$Lig_outcome)
|
||||
|
||||
# change to factor
|
||||
df$Lig_outcome = as.factor(df$Lig_outcome)
|
||||
|
||||
# should be TRUE
|
||||
is.factor(df$Lig_outcome)
|
||||
|
||||
#========
|
||||
#STEP 3
|
||||
#========
|
||||
# gsub
|
||||
head(df$Distancetoligand)
|
||||
df$Distancetoligand = gsub("Å"
|
||||
, ""
|
||||
, df$Distancetoligand)
|
||||
# sanity checks
|
||||
head(df$Distancetoligand)
|
||||
|
||||
# should be numeric, check if not change it to numeric
|
||||
is.numeric(df$Distancetoligand)
|
||||
|
||||
# change to numeric
|
||||
df$Distancetoligand = as.numeric(df$Distancetoligand)
|
||||
|
||||
# should be TRUE
|
||||
is.numeric(df$Distancetoligand)
|
||||
|
||||
# change the column name to indicate units
|
||||
n = which(colnames(df) == "Distancetoligand")
|
||||
colnames(df)[n] <- "Dis_lig_Ang"
|
||||
colnames(df)[n]
|
||||
|
||||
#========
|
||||
#STEP 4
|
||||
#========
|
||||
#gsub
|
||||
head(df$DUETstabilitychange)
|
||||
df$DUETstabilitychange = gsub("Kcal/mol"
|
||||
, ""
|
||||
, df$DUETstabilitychange)
|
||||
# sanity checks
|
||||
head(df$DUETstabilitychange)
|
||||
|
||||
# should be numeric, check if not change it to numeric
|
||||
is.numeric(df$DUETstabilitychange)
|
||||
|
||||
# change to numeric
|
||||
df$DUETstabilitychange = as.numeric(df$DUETstabilitychange)
|
||||
|
||||
# should be TRUE
|
||||
is.numeric(df$DUETstabilitychange)
|
||||
|
||||
# change the column name to indicate units
|
||||
n = which(colnames(df) == "DUETstabilitychange"); n
|
||||
colnames(df)[n] = "DUETStability_Kcalpermol"
|
||||
colnames(df)[n]
|
||||
|
||||
#========
|
||||
#STEP 5
|
||||
#========
|
||||
# create yet another extra column: classification of DUET stability only
|
||||
df$DUET_outcome = ifelse(df$DUETStability_Kcalpermol >=0
|
||||
, "Stabilizing"
|
||||
, "Destabilizing") # spelling to be consistent with mcsm
|
||||
|
||||
table(df$Lig_outcome)
|
||||
|
||||
table(df$DUET_outcome)
|
||||
|
||||
#==============================
|
||||
#FIXME
|
||||
#Insert a venn diagram
|
||||
#================================
|
||||
|
||||
#========
|
||||
#STEP 6
|
||||
#========
|
||||
# assign wild and mutant colnames correctly
|
||||
|
||||
wt = which(colnames(df) == "Wild.type"); wt
|
||||
colnames(df)[wt] <- "Wild_type"
|
||||
colnames(df[wt])
|
||||
|
||||
mut = which(colnames(df) == "Mutant.type"); mut
|
||||
colnames(df)[mut] <- "Mutant_type"
|
||||
colnames(df[mut])
|
||||
|
||||
#========
|
||||
#STEP 7
|
||||
#========
|
||||
# create an extra column: maybe useful for some plots
|
||||
df$WildPos = paste0(df$Wild_type, df$Position)
|
||||
|
||||
# clear variables
|
||||
rm(n, wt, mut)
|
||||
|
||||
################ end of data cleaning
|
|
@ -1,275 +0,0 @@
|
|||
##################
|
||||
# load libraries
|
||||
library(compare)
|
||||
##################
|
||||
|
||||
getwd()
|
||||
|
||||
#=======================================================
|
||||
# TASK:read cleaned data and perform rescaling
|
||||
# of DUET stability scores
|
||||
# of Pred affinity
|
||||
# compare scaling methods with plots
|
||||
|
||||
# Requirements:
|
||||
# input: R script, step3c_results_cleaning.R
|
||||
# path: Data/<drug>/input/processed/<filename>"
|
||||
# output: NO output as the next scripts refers to this
|
||||
# for yet more processing
|
||||
# output normalised file
|
||||
#=======================================================
|
||||
|
||||
# specify variables for input and output paths and filenames
|
||||
homedir = "~"
|
||||
currdir = "/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/mcsm"
|
||||
in_filename = "/step3c_results_cleaning.R"
|
||||
infile = paste0(homedir, currdir, in_filename)
|
||||
print(paste0("Input file is:", infile))
|
||||
|
||||
# output file
|
||||
basedir = "/git/Data/pyrazinamide/input"
|
||||
outpath = "/processed"
|
||||
out_filename = "/mcsm_complex1_normalised.csv"
|
||||
outfile = paste0(homedir, basedir, outpath, out_filename)
|
||||
print(paste0("Output file is:", outfile))
|
||||
|
||||
####################
|
||||
#### read file #####: this will be the output of my R script that cleans the data columns
|
||||
####################
|
||||
source(infile)
|
||||
|
||||
#This will outut two dataframes:
|
||||
# data: unclean data: 10 cols
|
||||
# df : cleaned df: 13 cols
|
||||
# you can remove data if you want as you will not need it
|
||||
rm(data)
|
||||
|
||||
colnames(df)
|
||||
|
||||
#===================
|
||||
#3a: PredAffLog
|
||||
#===================
|
||||
n = which(colnames(df) == "PredAffLog"); n
|
||||
group = which(colnames(df) == "Lig_outcome"); group
|
||||
|
||||
#===================================================
|
||||
# order according to PredAffLog values
|
||||
#===================================================
|
||||
# This is because this makes it easier to see the results of rescaling for debugging
|
||||
head(df$PredAffLog)
|
||||
|
||||
# ORDER BY PredAff scrores: negative values at the top and positive at the bottoom
|
||||
df = df[order(df$PredAffLog),]
|
||||
head(df$PredAffLog)
|
||||
|
||||
# sanity checks
|
||||
head(df[,n]) # all negatives
|
||||
tail(df[,n]) # all positives
|
||||
|
||||
# sanity checks
|
||||
mean(df[,n])
|
||||
#-0.9526746
|
||||
|
||||
tapply(df[,n], df[,group], mean)
|
||||
|
||||
#===========================
|
||||
# Same as above: in 2 steps
|
||||
#===========================
|
||||
|
||||
# find range of your data
|
||||
my_min = min(df[,n]); my_min #
|
||||
my_max = max(df[,n]); my_max #
|
||||
|
||||
#===============================================
|
||||
# WITHIN GROUP rescaling 2: method "ratio"
|
||||
# create column to store the rescaled values
|
||||
# Rescaling separately (Less dangerous)
|
||||
# =====> chosen one: preserves sign
|
||||
#===============================================
|
||||
df$ratioPredAff = ifelse(df[,n] < 0
|
||||
, df[,n]/abs(my_min)
|
||||
, df[,n]/my_max
|
||||
)# 14 cols
|
||||
# sanity checks
|
||||
head(df$ratioPredAff)
|
||||
tail(df$ratioPredAff)
|
||||
|
||||
min(df$ratioPredAff); max(df$ratioPredAff)
|
||||
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
||||
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
||||
|
||||
# should be the same as below
|
||||
sum(df$ratioPredAff < 0); sum(df$ratioPredAff > 0)
|
||||
|
||||
table(df$Lig_outcome)
|
||||
|
||||
#===============================================
|
||||
# Hist and density plots to compare the rescaling
|
||||
# methods: Base R
|
||||
#===============================================
|
||||
# uncomment as necessary
|
||||
my_title = "Ligand_stability"
|
||||
# my_title = colnames(df[n])
|
||||
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
, mfrow = c(2,2))
|
||||
|
||||
hist(df[,n]
|
||||
, xlab = ""
|
||||
, main = "Raw values"
|
||||
)
|
||||
|
||||
hist(df$ratioPredAff
|
||||
, xlab = ""
|
||||
, main = "ratio rescaling"
|
||||
)
|
||||
|
||||
# Plot density plots underneath
|
||||
plot(density( df[,n] )
|
||||
, main = "Raw values"
|
||||
)
|
||||
|
||||
plot(density( df$ratioPredAff )
|
||||
, main = "ratio rescaling"
|
||||
)
|
||||
|
||||
# titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = my_title
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
|
||||
#clear variables
|
||||
rm(my_min, my_max, my_title, n, group)
|
||||
|
||||
#===================
|
||||
# 3b: DUET stability
|
||||
#===================
|
||||
dim(df) # 14 cols
|
||||
|
||||
n = which(colnames(df) == "DUETStability_Kcalpermol"); n # 10
|
||||
group = which(colnames(df) == "DUET_outcome"); group #12
|
||||
|
||||
#===================================================
|
||||
# order according to DUET scores
|
||||
#===================================================
|
||||
# This is because this makes it easier to see the results of rescaling for debugging
|
||||
head(df$DUETStability_Kcalpermol)
|
||||
|
||||
# ORDER BY DUET scores: negative values at the top and positive at the bottom
|
||||
df = df[order(df$DUETStability_Kcalpermol),]
|
||||
|
||||
# sanity checks
|
||||
head(df[,n]) # negatives
|
||||
tail(df[,n]) # positives
|
||||
|
||||
# sanity checks
|
||||
mean(df[,n])
|
||||
|
||||
tapply(df[,n], df[,group], mean)
|
||||
|
||||
#===============================================
|
||||
# WITHIN GROUP rescaling 2: method "ratio"
|
||||
# create column to store the rescaled values
|
||||
# Rescaling separately (Less dangerous)
|
||||
# =====> chosen one: preserves sign
|
||||
#===============================================
|
||||
# find range of your data
|
||||
my_min = min(df[,n]); my_min
|
||||
my_max = max(df[,n]); my_max
|
||||
|
||||
df$ratioDUET = ifelse(df[,n] < 0
|
||||
, df[,n]/abs(my_min)
|
||||
, df[,n]/my_max
|
||||
) # 15 cols
|
||||
# sanity check
|
||||
head(df$ratioDUET)
|
||||
tail(df$ratioDUET)
|
||||
|
||||
min(df$ratioDUET); max(df$ratioDUET)
|
||||
|
||||
# sanity checks
|
||||
tapply(df$ratioDUET, df$DUET_outcome, min)
|
||||
|
||||
tapply(df$ratioDUET, df$DUET_outcome, max)
|
||||
|
||||
# should be the same as below (267 and 42)
|
||||
sum(df$ratioDUET < 0); sum(df$ratioDUET > 0)
|
||||
|
||||
table(df$DUET_outcome)
|
||||
|
||||
#===============================================
|
||||
# Hist and density plots to compare the rescaling
|
||||
# methods: Base R
|
||||
#===============================================
|
||||
# uncomment as necessary
|
||||
my_title = "DUET_stability"
|
||||
#my_title = colnames(df[n])
|
||||
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
, mfrow = c(2,2))
|
||||
|
||||
hist(df[,n]
|
||||
, xlab = ""
|
||||
, main = "Raw values"
|
||||
)
|
||||
|
||||
hist(df$ratioDUET
|
||||
, xlab = ""
|
||||
, main = "ratio rescaling"
|
||||
)
|
||||
|
||||
# Plot density plots underneath
|
||||
plot(density( df[,n] )
|
||||
, main = "Raw values"
|
||||
)
|
||||
|
||||
plot(density( df$ratioDUET )
|
||||
, main = "ratio rescaling"
|
||||
)
|
||||
|
||||
# graph titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = my_title
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
# reorder by column name
|
||||
#data <- data[c("A", "B", "C")]
|
||||
colnames(df)
|
||||
df2 = df[c("X", "Mutationinformation", "WildPos", "Position"
|
||||
, "Wild_type", "Mutant_type"
|
||||
, "DUETStability_Kcalpermol", "DUET_outcome"
|
||||
, "Dis_lig_Ang", "PredAffLog", "Lig_outcome"
|
||||
, "ratioDUET", "ratioPredAff"
|
||||
, "LigandID","Chain")]
|
||||
|
||||
# sanity check
|
||||
# should be True
|
||||
#compare(df, df2, allowAll = T)
|
||||
compare(df, df2, ignoreColOrder = T)
|
||||
#TRUE
|
||||
#reordered columns
|
||||
|
||||
#===================
|
||||
# write output as csv file
|
||||
#===================
|
||||
#write.csv(df, "../Data/mcsm_complex1_normalised.csv", row.names = FALSE)
|
||||
write.csv(df2, outfile, row.names = FALSE)
|
|
@ -1,131 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
require(data.table)
|
||||
require(dplyr)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
###########################
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
###########################
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
###########################
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
###########################
|
||||
# Data for bfactor figure
|
||||
# PS average
|
||||
# Lig average
|
||||
###########################
|
||||
|
||||
head(my_df$Position)
|
||||
head(my_df$ratioDUET)
|
||||
|
||||
# order data frame
|
||||
df = my_df[order(my_df$Position),]
|
||||
|
||||
head(df$Position)
|
||||
head(df$ratioDUET)
|
||||
|
||||
#***********
|
||||
# PS: average by position
|
||||
#***********
|
||||
|
||||
mean_DUET_by_position <- df %>%
|
||||
group_by(Position) %>%
|
||||
summarize(averaged.DUET = mean(ratioDUET))
|
||||
|
||||
#***********
|
||||
# Lig: average by position
|
||||
#***********
|
||||
mean_Lig_by_position <- df %>%
|
||||
group_by(Position) %>%
|
||||
summarize(averaged.Lig = mean(ratioPredAff))
|
||||
|
||||
|
||||
#***********
|
||||
# cbind:mean_DUET_by_position and mean_Lig_by_position
|
||||
#***********
|
||||
|
||||
combined = as.data.frame(cbind(mean_DUET_by_position, mean_Lig_by_position ))
|
||||
|
||||
# sanity check
|
||||
# mean_PS_Lig_Bfactor
|
||||
|
||||
colnames(combined)
|
||||
|
||||
colnames(combined) = c("Position"
|
||||
, "average_DUETR"
|
||||
, "Position2"
|
||||
, "average_PredAffR")
|
||||
|
||||
colnames(combined)
|
||||
|
||||
identical(combined$Position, combined$Position2)
|
||||
|
||||
n = which(colnames(combined) == "Position2"); n
|
||||
|
||||
combined_df = combined[,-n]
|
||||
|
||||
max(combined_df$average_DUETR) ; min(combined_df$average_DUETR)
|
||||
|
||||
max(combined_df$average_PredAffR) ; min(combined_df$average_PredAffR)
|
||||
|
||||
#=============
|
||||
# output csv
|
||||
#============
|
||||
outDir = "~/git/Data/pyrazinamide/input/processed/"
|
||||
outFile = paste0(outDir, "mean_PS_Lig_Bfactor.csv")
|
||||
print(paste0("Output file with path will be:","", outFile))
|
||||
|
||||
head(combined_df$Position); tail(combined_df$Position)
|
||||
|
||||
write.csv(combined_df, outFile
|
||||
, row.names = F)
|
Binary file not shown.
|
@ -1,250 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
require(cowplot)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for OR and stability plots
|
||||
# you need merged_df3_comp
|
||||
# since these are matched
|
||||
# to allow pairwise corr
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3_comp
|
||||
#my_df = merged_df3
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# sanity check
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.numeric(my_df$OR)
|
||||
#[1] TRUE
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
# FOR PS Plots
|
||||
#<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
PS_df = my_df
|
||||
|
||||
rm(my_df)
|
||||
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> end of section 1
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
getwd()
|
||||
|
||||
source("combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for OR and stability plots
|
||||
# you need merged_df3_comp
|
||||
# since these are matched
|
||||
# to allow pairwise corr
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df2 = merged_df3_comp
|
||||
#my_df2 = merged_df3
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df2)
|
||||
str(my_df2)
|
||||
|
||||
# sanity check
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.numeric(my_df2$OR)
|
||||
#[1] TRUE
|
||||
|
||||
# sanity check: should be <10
|
||||
if (max(my_df2$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
#<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
# FOR Lig Plots
|
||||
#<<<<<<<<<<<<<<<<
|
||||
|
||||
Lig_df = my_df2
|
||||
|
||||
rm(my_df2)
|
||||
|
||||
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> end of section 1
|
||||
|
||||
#############
|
||||
# Plots: Bubble plot
|
||||
# x = Position, Y = stability
|
||||
# size of dots = OR
|
||||
# col: stability
|
||||
#############
|
||||
|
||||
#=================
|
||||
# generate plot 1: DUET vs OR by position as geom_points
|
||||
#=================
|
||||
|
||||
my_ats = 20 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
# Spelling Correction: made redundant as already corrected at the source
|
||||
|
||||
#PS_df$DUET_outcome[PS_df$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
#PS_df$DUET_outcome[PS_df$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
table(PS_df$DUET_outcome) ; sum(table(PS_df$DUET_outcome))
|
||||
|
||||
g = ggplot(PS_df, aes(x = factor(Position)
|
||||
, y = ratioDUET))
|
||||
|
||||
p1 = g +
|
||||
geom_point(aes(col = DUET_outcome
|
||||
, size = OR)) +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_ats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_als)
|
||||
, axis.title.y = element_text(size = my_als)
|
||||
, legend.text = element_text(size = my_als)
|
||||
, legend.title = element_text(size = my_als) ) +
|
||||
#, legend.key.size = unit(1, "cm")) +
|
||||
labs(title = ""
|
||||
, x = "Position"
|
||||
, y = "DUET(PS)"
|
||||
, size = "Odds Ratio"
|
||||
, colour = "DUET Outcome") +
|
||||
guides(colour = guide_legend(override.aes = list(size=4)))
|
||||
|
||||
p1
|
||||
|
||||
#=================
|
||||
# generate plot 2: Lig vs OR by position as geom_points
|
||||
#=================
|
||||
my_ats = 20 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
# Spelling Correction: made redundant as already corrected at the source
|
||||
|
||||
#Lig_df$Lig_outcome[Lig_df$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
#Lig_df$Lig_outcome[Lig_df$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
table(Lig_df$Lig_outcome)
|
||||
|
||||
g = ggplot(Lig_df, aes(x = factor(Position)
|
||||
, y = ratioPredAff))
|
||||
|
||||
p2 = g +
|
||||
geom_point(aes(col = Lig_outcome
|
||||
, size = OR))+
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_ats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_als)
|
||||
, axis.title.y = element_text(size = my_als)
|
||||
, legend.text = element_text(size = my_als)
|
||||
, legend.title = element_text(size = my_als) ) +
|
||||
#, legend.key.size = unit(1, "cm")) +
|
||||
labs(title = ""
|
||||
, x = "Position"
|
||||
, y = "Ligand Affinity"
|
||||
, size = "Odds Ratio"
|
||||
, colour = "Ligand Outcome"
|
||||
) +
|
||||
guides(colour = guide_legend(override.aes = list(size=4)))
|
||||
|
||||
p2
|
||||
|
||||
#======================
|
||||
#combine using cowplot
|
||||
#======================
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
svg('PS_Lig_OR_combined.svg', width = 32, height = 12) #inches
|
||||
#png('PS_Lig_OR_combined.png', width = 2800, height = 1080) #300dpi
|
||||
theme_set(theme_gray()) # to preserve default theme
|
||||
|
||||
printFile = cowplot::plot_grid(plot_grid(p1, p2
|
||||
, ncol = 1
|
||||
, align = 'v'
|
||||
, labels = c("(a)", "(b)")
|
||||
, label_size = my_als+5))
|
||||
print(printFile)
|
||||
dev.off()
|
||||
|
|
@ -1,154 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for Lig plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(my_df$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Plot: Barplot with scores (unordered)
|
||||
# corresponds to Lig_outcome
|
||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
||||
# Lig_outcome. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding Lig_outcome.
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
upos = unique(my_df$Position)
|
||||
|
||||
# should be a factor
|
||||
is.factor(df$Lig_outcome)
|
||||
#TRUE
|
||||
|
||||
table(df$Lig_outcome)
|
||||
|
||||
# should be -1 and 1: may not be in this case because you have filtered the data
|
||||
# FIXME: normalisation before or after filtering?
|
||||
min(df$ratioPredAff) #
|
||||
max(df$ratioPredAff) #
|
||||
|
||||
# sanity checks
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
my_title = "Ligand affinity"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = Lig_outcome), colour = "grey") +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
|
@ -1,149 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for DUET plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
# sanity check
|
||||
is.factor(my_df$DUET_outcome)
|
||||
my_df$DUET_outcome = as.factor(my_df$DUET_outcome)
|
||||
is.factor(my_df$DUET_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Plot 2: Barplot with scores (unordered)
|
||||
# corresponds to DUET_outcome
|
||||
# Stacked Barplot with colours: DUET_outcome @ position coloured by
|
||||
# DUET outcome. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET_outcome
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
upos = unique(df$Position)
|
||||
|
||||
# should be a factor
|
||||
is.factor(my_df$DUET_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
table(my_df$DUET_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$ratioDUET)
|
||||
max(df$ratioDUET)
|
||||
|
||||
tapply(df$ratioDUET, df$DUET_outcome, min)
|
||||
tapply(df$ratioDUET, df$DUET_outcome, max)
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
my_title = "Protein stability (DUET)"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = DUET_outcome), colour = "grey") +
|
||||
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
|
@ -1,202 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
source("../barplot_colour_function.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for Lig plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
# sanity check
|
||||
is.factor(my_df$Lig_outcome)
|
||||
my_df$Lig_outcome = as.factor(my_df$Ligoutcome)
|
||||
is.factor(my_df$Lig_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(my_df$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Plot: Barplot with scores (unordered)
|
||||
# corresponds to Lig_outcome
|
||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding Lig stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
table(df$Lig_outcome)
|
||||
|
||||
# should be -1 and 1: may not be in this case because you have filtered the data
|
||||
# FIXME: normalisation before or after filtering?
|
||||
min(df$ratioPredAff) #
|
||||
max(df$ratioPredAff) #
|
||||
|
||||
# sanity checks
|
||||
# very important!!!!
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
||||
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
||||
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = Lig_outcome
|
||||
# subgroup = normalised score i.e ratioPredAff
|
||||
|
||||
# Prepare data: round off ratioLig scores
|
||||
# round off to 3 significant digits:
|
||||
# 165 if no rounding is performed: used to generate the originalgraph
|
||||
# 156 if rounded to 3 places
|
||||
# FIXME: check if reducing precision creates any ML prob
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$ratioPredAff)
|
||||
|
||||
# <<<<< -------------------------------------------
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$ratioLigR = round(df$ratioPredAff, n)
|
||||
u = unique(df$ratioLigR) # 156
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
my_grp = df$ratioLigR
|
||||
df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# else
|
||||
# uncomment the below if rounding is not required
|
||||
|
||||
#my_grp = df$ratioLig
|
||||
#df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# <<<<< -----------------------------------------------
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
|
||||
my_title = "Ligand affinity"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
|
@ -1,192 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
source("../barplot_colour_function.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for DUET plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
# sanity check
|
||||
is.factor(my_df$DUET_outcome)
|
||||
my_df$DUET_outcome = as.factor(my_df$DUET_outcome)
|
||||
is.factor(my_df$DUET_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Barplot with scores (unordered)
|
||||
# corresponds to DUET_outcome
|
||||
# Stacked Barplot with colours: DUET_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
upos = unique(df$Position)
|
||||
|
||||
# should be a factor
|
||||
is.factor(my_df$DUET_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
table(df$DUET_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$ratioDUET)
|
||||
max(df$ratioDUET)
|
||||
|
||||
tapply(df$ratioDUET, df$DUET_outcome, min)
|
||||
tapply(df$ratioDUET, df$DUET_outcome, max)
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = DUET_outcome
|
||||
# subgroup = normalised score i.e ratioDUET
|
||||
|
||||
# Prepare data: round off ratioDUET scores
|
||||
# round off to 3 significant digits:
|
||||
# 323 if no rounding is performed: used to generate the original graph
|
||||
# 287 if rounded to 3 places
|
||||
# FIXME: check if reducing precicion creates any ML prob
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$ratioDUET)
|
||||
|
||||
# <<<<< -------------------------------------------
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$ratioDUETR = round(df$ratioDUET, n)
|
||||
u = unique(df$ratioDUETR)
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
my_grp = df$ratioDUETR
|
||||
df$group <- paste0(df$DUET_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# else
|
||||
# uncomment the below if rounding is not required
|
||||
|
||||
#my_grp = df$ratioDUET
|
||||
#df$group <- paste0(df$DUET_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# <<<<< -----------------------------------------------
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "DUET_outcome", "my_grp")
|
||||
my_title = "Protein stability (DUET)"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
|
@ -1,296 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
source("../barplot_colour_function.R")
|
||||
|
||||
############################################################
|
||||
# Output dir for plots
|
||||
############################################################
|
||||
out_dir = "~/git/Data/pyrazinamide/output/plots"
|
||||
|
||||
############################################################
|
||||
# 2: call script the prepares the data with columns containing
|
||||
# colours for axis labels
|
||||
############################################################
|
||||
|
||||
source("subcols_axis_LIG.R")
|
||||
|
||||
# this should return
|
||||
#mut_pos_cols: 52, 4
|
||||
#my_df: 169, 39
|
||||
|
||||
# clear excess variable
|
||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
||||
# position numbers and colours
|
||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
||||
|
||||
table(mut_pos_cols$lab_bg)
|
||||
|
||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_bg2)
|
||||
|
||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_fg)
|
||||
|
||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
# very important!: should be the length of the unique positions
|
||||
my_axis_colours = mut_pos_cols$lab_fg
|
||||
|
||||
# now clear mut_pos_cols
|
||||
rm(mut_pos_cols)
|
||||
|
||||
###########################
|
||||
# 2: Plot: Lig scores
|
||||
###########################
|
||||
#==========================
|
||||
# Plot 2: Barplot with scores (unordered)
|
||||
# corresponds to Lig_outcome
|
||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding PredAff stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
# sanity checks
|
||||
upos = unique(my_df$Position)
|
||||
|
||||
str(my_df$Lig_outcome)
|
||||
|
||||
colnames(my_df)
|
||||
|
||||
#===========================
|
||||
# Data preparation for plots
|
||||
#===========================
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
df <- my_df
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
# should be a factor
|
||||
is.factor(df$Lig_outcome);
|
||||
#FALSE
|
||||
|
||||
df$Lig_outcome = as.factor(df$Lig_outcome)
|
||||
is.factor(df$Lig_outcome);
|
||||
#TRUE
|
||||
|
||||
table(df$Lig_outcome)
|
||||
|
||||
# check the range
|
||||
min(df$ratioPredAff)
|
||||
max(df$ratioPredAff)
|
||||
|
||||
# sanity checks
|
||||
# very important!!!!
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
||||
|
||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = Lig_outcome
|
||||
# subgroup = normalised score i.e ratioPredAff
|
||||
|
||||
# Prepare data: round off ratioPredAff scores
|
||||
# round off to 3 significant digits:
|
||||
# 323 if no rounding is performed: used to generate the original graph
|
||||
# 287 if rounded to 3 places
|
||||
# FIXME: check if reducing precicion creates any ML prob
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$ratioPredAff)
|
||||
|
||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$ratioPredAffR = round(df$ratioPredAff, n)
|
||||
u = unique(df$ratioPredAffR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
my_grp = df$ratioPredAffR
|
||||
df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# ELSE
|
||||
# uncomment the below if rounding is not required
|
||||
|
||||
#my_grp = df$ratioPredAff
|
||||
#df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
|
||||
my_title = "Ligand Affinity"
|
||||
library(ggplot2)
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis according to frequency
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
#========================
|
||||
# plot with axis colours
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
# make this a named vector
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$Position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 15
|
||||
my_yals = 15
|
||||
|
||||
# axes text size
|
||||
my_xats = 15
|
||||
my_yats = 18
|
||||
|
||||
# using geom_tile
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
, ylim = c(0, 6)
|
||||
, clip = "off") +
|
||||
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
||||
theme( axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()
|
||||
) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
#========================
|
||||
# output plot as svg/png
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
# make this a named vector
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$Position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 18
|
||||
my_yals = 18
|
||||
|
||||
# axes text size
|
||||
my_xats = 16 #14 in PS
|
||||
my_yats = 18
|
||||
|
||||
# set output dir for plots
|
||||
#getwd()
|
||||
#setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
#getwd()
|
||||
|
||||
plot_name = "barplot_LIG_acoloured.svg"
|
||||
my_plot_name = paste0(out_dir, "/", plot_name); my_plot_name
|
||||
|
||||
svg(my_plot_name, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
|
||||
outFile = g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
, ylim = c(0, 6)
|
||||
, clip = "off"
|
||||
) +
|
||||
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
# geom_tile(aes(,-0.6, width = 0.9, height = 0.7)
|
||||
# , fill = df$lab_bg) +
|
||||
# geom_tile(aes(,-1, width = 0.9, height = 0.3)
|
||||
# , fill = df$lab_bg2) +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
||||
theme( axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()
|
||||
) +
|
||||
labs(title = ""
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
|
||||
print(outFile)
|
||||
dev.off()
|
||||
|
||||
# for sanity and good practice
|
||||
#rm(df)
|
|
@ -1,292 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
source("../barplot_colour_function.R")
|
||||
|
||||
############################################################
|
||||
# Output dir for plots
|
||||
############################################################
|
||||
out_dir = "~/git/Data/pyrazinamide/output/plots"
|
||||
|
||||
############################################################
|
||||
# 2: call script the prepares the data with columns containing
|
||||
# colours for axis labels
|
||||
############################################################
|
||||
|
||||
source("subcols_axis.R")
|
||||
|
||||
# this should return
|
||||
#mut_pos_cols: 130, 4
|
||||
#my_df: 335, 39
|
||||
|
||||
# clear excess variable
|
||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
||||
# position numbers and colours
|
||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
||||
|
||||
table(mut_pos_cols$lab_bg)
|
||||
|
||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_bg2)
|
||||
|
||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_fg)
|
||||
|
||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
# very important!
|
||||
my_axis_colours = mut_pos_cols$lab_fg
|
||||
|
||||
# now clear mut_pos_cols
|
||||
rm(mut_pos_cols)
|
||||
|
||||
###########################
|
||||
# 2: Plot: DUET scores
|
||||
###########################
|
||||
#==========================
|
||||
# Plot 2: Barplot with scores (unordered)
|
||||
# corresponds to DUET_outcome
|
||||
# Stacked Barplot with colours: DUET_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
# sanity checks
|
||||
upos = unique(my_df$Position)
|
||||
|
||||
str(my_df$DUET_outcome)
|
||||
|
||||
colnames(my_df)
|
||||
|
||||
#===========================
|
||||
# Data preparation for plots
|
||||
#===========================
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
df <- my_df
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
# should be a factor
|
||||
is.factor(df$DUET_outcome)
|
||||
#TRUE
|
||||
|
||||
table(df$DUET_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$ratioDUET)
|
||||
max(df$ratioDUET)
|
||||
|
||||
# sanity checks
|
||||
# very important!!!!
|
||||
tapply(df$ratioDUET, df$DUET_outcome, min)
|
||||
|
||||
tapply(df$ratioDUET, df$DUET_outcome, max)
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = DUET_outcome
|
||||
# subgroup = normalised score i.e ratioDUET
|
||||
|
||||
# Prepare data: round off ratioDUET scores
|
||||
# round off to 3 significant digits:
|
||||
# 323 if no rounding is performed: used to generate the original graph
|
||||
# 287 if rounded to 3 places
|
||||
# FIXME: check if reducing precicion creates any ML prob
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$ratioDUET)
|
||||
|
||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$ratioDUETR = round(df$ratioDUET, n)
|
||||
u = unique(df$ratioDUETR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
my_grp = df$ratioDUETR
|
||||
df$group <- paste0(df$DUET_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# ELSE
|
||||
# uncomment the below if rounding is not required
|
||||
|
||||
#my_grp = df$ratioDUET
|
||||
#df$group <- paste0(df$DUET_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "DUET_outcome", "my_grp")
|
||||
my_title = "Protein stability (DUET)"
|
||||
library(ggplot2)
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
# no ordering of x-axis according to frequency
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
#========================
|
||||
# plot with axis colours
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
# make this a named vector
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$Position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 15
|
||||
my_yals = 15
|
||||
|
||||
# axes text size
|
||||
my_xats = 15
|
||||
my_yats = 18
|
||||
|
||||
# using geom_tile
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
, ylim = c(0, 6)
|
||||
, clip = "off") +
|
||||
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
||||
theme( axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()
|
||||
) +
|
||||
labs(title = my_title
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
#========================
|
||||
# output plot as svg/png
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
# make this a named vector
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$Position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 18
|
||||
my_yals = 18
|
||||
|
||||
# axes text size
|
||||
my_xats = 14
|
||||
my_yats = 18
|
||||
|
||||
# set output dir for plots
|
||||
#getwd()
|
||||
#setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
#getwd()
|
||||
|
||||
plot_name = "barplot_PS_acoloured.svg"
|
||||
my_plot_name = paste0(out_dir, "/", plot_name); my_plot_name
|
||||
|
||||
svg(my_plot_name, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
||||
|
||||
outFile = g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
, ylim = c(0, 6)
|
||||
, clip = "off"
|
||||
) +
|
||||
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
# geom_tile(aes(,-0.6, width = 0.9, height = 0.7)
|
||||
# , fill = df$lab_bg) +
|
||||
# geom_tile(aes(,-1, width = 0.9, height = 0.3)
|
||||
# , fill = df$lab_bg2) +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
||||
theme( axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()
|
||||
) +
|
||||
labs(title = ""
|
||||
, x = "Position"
|
||||
, y = "Frequency")
|
||||
|
||||
|
||||
print(outFile)
|
||||
dev.off()
|
||||
|
||||
# for sanity and good practice
|
||||
#rm(df)
|
|
@ -1,215 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
#require(data.table)
|
||||
#require(dplyr)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for Lig plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
# sanity check
|
||||
is.factor(my_df$Lig_outcome)
|
||||
my_df$Lig_outcome = as.factor(my_df$lig_outcome)
|
||||
is.factor(my_df$Lig_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(my_df$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Plot: Basic barplots
|
||||
#===========================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
if (identical(df$Position, df$position)){
|
||||
print("Sanity check passed: Columns 'Position' and 'position' are identical")
|
||||
} else{
|
||||
print("Error!: Check column names and info contained")
|
||||
}
|
||||
|
||||
#****************
|
||||
# generate plot: No of stabilising and destabilsing muts
|
||||
#****************
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
svg('basic_barplots_LIG.svg')
|
||||
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
# uncomment as necessary for either directly outputting results or
|
||||
# printing on the screen
|
||||
g = ggplot(df, aes(x = Lig_outcome))
|
||||
#prinfFile = g + geom_bar(
|
||||
g + geom_bar(
|
||||
aes(fill = Lig_outcome)
|
||||
, show.legend = TRUE
|
||||
) + geom_label(
|
||||
stat = "count"
|
||||
, aes(label = ..count..)
|
||||
, color = "black"
|
||||
, show.legend = FALSE
|
||||
, size = 10) + theme(
|
||||
axis.text.x = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_text(size=my_als)
|
||||
, axis.text.y = element_text(size = my_ats)
|
||||
, legend.position = c(0.73,0.8)
|
||||
, legend.text = element_text(size=my_als-2)
|
||||
, legend.title = element_text(size=my_als)
|
||||
, plot.title = element_blank()
|
||||
) + labs(
|
||||
title = ""
|
||||
, y = "Number of SNPs"
|
||||
#, fill='Ligand Outcome'
|
||||
) + scale_fill_discrete(name = "Ligand Outcome"
|
||||
, labels = c("Destabilising", "Stabilising"))
|
||||
print(prinfFile)
|
||||
dev.off()
|
||||
|
||||
#****************
|
||||
# generate plot: No of positions
|
||||
#****************
|
||||
#get freq count of positions so you can subset freq<1
|
||||
#require(data.table)
|
||||
setDT(df)[, pos_count := .N, by = .(Position)] #169, 36
|
||||
|
||||
head(df$pos_count)
|
||||
table(df$pos_count)
|
||||
# this is cummulative
|
||||
#1 2 3 4 5 6
|
||||
#5 24 36 56 30 18
|
||||
|
||||
# use group by on this
|
||||
snpsBYpos_df <- df %>%
|
||||
group_by(Position) %>%
|
||||
summarize(snpsBYpos = mean(pos_count))
|
||||
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
#1 2 3 4 5 6
|
||||
#5 12 12 14 6 3
|
||||
# this is what will get plotted
|
||||
|
||||
svg('position_count_LIG.svg')
|
||||
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
|
||||
prinfFile = g + geom_bar(
|
||||
#g + geom_bar(
|
||||
aes (alpha = 0.5)
|
||||
, show.legend = FALSE
|
||||
) +
|
||||
geom_label(
|
||||
stat = "count", aes(label = ..count..)
|
||||
, color = "black"
|
||||
, size = 10
|
||||
) +
|
||||
theme(
|
||||
axis.text.x = element_text(
|
||||
size = my_ats
|
||||
, angle = 0
|
||||
)
|
||||
, axis.text.y = element_text(
|
||||
size = my_ats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
)
|
||||
, axis.title.x = element_text(size = my_als)
|
||||
, axis.title.y = element_text(size = my_als)
|
||||
, plot.title = element_blank()
|
||||
) +
|
||||
labs(
|
||||
x = "Number of SNPs"
|
||||
, y = "Number of Sites"
|
||||
)
|
||||
print(prinfFile)
|
||||
dev.off()
|
||||
########################################################################
|
||||
# end of Lig barplots #
|
||||
########################################################################
|
||||
|
||||
|
|
@ -1,211 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for DUET plots
|
||||
# you need merged_df3
|
||||
# or
|
||||
# merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
# sanity check
|
||||
is.factor(my_df$DUET_outcome)
|
||||
my_df$DUET_outcome = as.factor(my_df$DUET_outcome)
|
||||
is.factor(my_df$DUET_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Plot: Basic barplots
|
||||
#===========================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
if (identical(df$Position, df$position)){
|
||||
print("Sanity check passed: Columns 'Position' and 'position' are identical")
|
||||
} else{
|
||||
print("Error!: Check column names and info contained")
|
||||
}
|
||||
|
||||
#****************
|
||||
# generate plot: No of stabilising and destabilsing muts
|
||||
#****************
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
svg('basic_barplots_DUET.svg')
|
||||
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
theme_set(theme_grey())
|
||||
|
||||
# uncomment as necessary for either directly outputting results or
|
||||
# printing on the screen
|
||||
g = ggplot(df, aes(x = DUET_outcome))
|
||||
prinfFile = g + geom_bar(
|
||||
#g + geom_bar(
|
||||
aes(fill = DUET_outcome)
|
||||
, show.legend = TRUE
|
||||
) + geom_label(
|
||||
stat = "count"
|
||||
, aes(label = ..count..)
|
||||
, color = "black"
|
||||
, show.legend = FALSE
|
||||
, size = 10) + theme(
|
||||
axis.text.x = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_text(size=my_als)
|
||||
, axis.text.y = element_text(size = my_ats)
|
||||
, legend.position = c(0.73,0.8)
|
||||
, legend.text = element_text(size=my_als-2)
|
||||
, legend.title = element_text(size=my_als)
|
||||
, plot.title = element_blank()
|
||||
) + labs(
|
||||
title = ""
|
||||
, y = "Number of SNPs"
|
||||
#, fill='DUET Outcome'
|
||||
) + scale_fill_discrete(name = "DUET Outcome"
|
||||
, labels = c("Destabilising", "Stabilising"))
|
||||
|
||||
print(prinfFile)
|
||||
dev.off()
|
||||
|
||||
#****************
|
||||
# generate plot: No of positions
|
||||
#****************
|
||||
#get freq count of positions so you can subset freq<1
|
||||
#setDT(df)[, .(Freq := .N), by = .(Position)] #189, 36
|
||||
|
||||
setDT(df)[, pos_count := .N, by = .(Position)] #335, 36
|
||||
table(df$pos_count)
|
||||
# this is cummulative
|
||||
#1 2 3 4 5 6
|
||||
#34 76 63 104 40 18
|
||||
|
||||
# use group by on this
|
||||
snpsBYpos_df <- df %>%
|
||||
group_by(Position) %>%
|
||||
summarize(snpsBYpos = mean(pos_count))
|
||||
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
#1 2 3 4 5 6
|
||||
#34 38 21 26 8 3
|
||||
|
||||
foo = select(df, Mutationinformation
|
||||
, WildPos
|
||||
, wild_type
|
||||
, mutant_type
|
||||
, mutation_info
|
||||
, position
|
||||
, pos_count) #335, 5
|
||||
|
||||
getwd()
|
||||
write.csv(foo, "../Data/pos_count_freq.csv")
|
||||
|
||||
svg('position_count_DUET.svg')
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
|
||||
prinfFile = g + geom_bar(
|
||||
#g + geom_bar(
|
||||
aes (alpha = 0.5)
|
||||
, show.legend = FALSE
|
||||
) +
|
||||
geom_label(
|
||||
stat = "count", aes(label = ..count..)
|
||||
, color = "black"
|
||||
, size = 10
|
||||
) +
|
||||
theme(
|
||||
axis.text.x = element_text(
|
||||
size = my_ats
|
||||
, angle = 0
|
||||
)
|
||||
, axis.text.y = element_text(
|
||||
size = my_ats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
)
|
||||
, axis.title.x = element_text(size = my_als)
|
||||
, axis.title.y = element_text(size = my_als)
|
||||
, plot.title = element_blank()
|
||||
) +
|
||||
labs(
|
||||
x = "Number of SNPs"
|
||||
, y = "Number of Sites"
|
||||
)
|
||||
print(prinfFile)
|
||||
dev.off()
|
||||
########################################################################
|
||||
# end of DUET barplots #
|
||||
########################################################################
|
||||
|
|
@ -1,175 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for PS Corr plots
|
||||
# you need merged_df3_comp
|
||||
# since these are matched
|
||||
# to allow pairwise corr
|
||||
###########################
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Plot: Correlation plots
|
||||
#===========================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
table(df$DUET_outcome)
|
||||
|
||||
# unique positions
|
||||
length(unique(df$Position)) #{RESULT: unique positions for comp data}
|
||||
|
||||
|
||||
# subset data to generate pairwise correlations
|
||||
corr_data = df[, c("ratioDUET"
|
||||
# , "ratioPredAff"
|
||||
# , "DUETStability_Kcalpermol"
|
||||
# , "PredAffLog"
|
||||
# , "OR"
|
||||
, "logor"
|
||||
# , "pvalue"
|
||||
, "neglog10pvalue"
|
||||
, "AF"
|
||||
, "DUET_outcome"
|
||||
# , "Lig_outcome"
|
||||
, "pyrazinamide"
|
||||
)]
|
||||
dim(corr_data)
|
||||
rm(df)
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c("DUET"
|
||||
# , "Ligand Affinity"
|
||||
# , "DUET_raw"
|
||||
# , "Lig_raw"
|
||||
# , "OR"
|
||||
, "Log(Odds Ratio)"
|
||||
# , "P-value"
|
||||
, "-LogP"
|
||||
, "Allele Frequency"
|
||||
, "DUET_outcome"
|
||||
# , "Lig_outcome"
|
||||
, "pyrazinamide")
|
||||
|
||||
# sanity check
|
||||
if (length(my_corr_colnames) == length(corr_data)){
|
||||
print("Sanity check passed: corr_data and corr_names match in length")
|
||||
}else{
|
||||
print("Error: length mismatch!")
|
||||
}
|
||||
|
||||
colnames(corr_data)
|
||||
colnames(corr_data) <- my_corr_colnames
|
||||
colnames(corr_data)
|
||||
|
||||
###############
|
||||
# PLOTS: corr
|
||||
# http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs
|
||||
###############
|
||||
#default pairs plot
|
||||
start = 1
|
||||
end = which(colnames(corr_data) == "pyrazinamide"); end # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_corr = corr_data[start:(end-offset)]
|
||||
head(my_corr)
|
||||
|
||||
#my_cols = c("#f8766d", "#00bfc4")
|
||||
# deep blue :#007d85
|
||||
# deep red: #ae301e
|
||||
|
||||
#==========
|
||||
# psych: ionformative since it draws the ellipsoid
|
||||
# https://jamesmarquezportfolio.com/correlation_matrices_in_r.html
|
||||
# http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs
|
||||
#==========
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots"
|
||||
getwd()
|
||||
|
||||
svg('DUET_corr.svg', width = 15, height = 15)
|
||||
printFile = pairs.panels(my_corr[1:4]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr$DUET_outcome))]
|
||||
, pch = 21
|
||||
, jitter = T
|
||||
#, alpha = .05
|
||||
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 3
|
||||
, cex.axis = 2.5
|
||||
, cex.labels = 3
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
|
@ -1,187 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for Lig Corr plots
|
||||
# you need merged_df3_comp
|
||||
# since these are matched
|
||||
# to allow pairwise corr
|
||||
###########################
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(my_df$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Plot: Correlation plots
|
||||
#===========================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df = my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
table(df$Lig_outcome)
|
||||
|
||||
# unique positions
|
||||
length(unique(df$Position)) #{RESULT: unique positions for comp data}
|
||||
|
||||
# subset data to generate pairwise correlations
|
||||
corr_data = df[, c(#"ratioDUET",
|
||||
"ratioPredAff"
|
||||
# , "DUETStability_Kcalpermol"
|
||||
# , "PredAffLog"
|
||||
# , "OR"
|
||||
, "logor"
|
||||
# , "pvalue"
|
||||
, "neglog10pvalue"
|
||||
, "AF"
|
||||
# , "DUET_outcome"
|
||||
, "Lig_outcome"
|
||||
, "pyrazinamide"
|
||||
)]
|
||||
dim(corr_data)
|
||||
rm(df)
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c(#"DUET",
|
||||
"Ligand Affinity"
|
||||
# ,"DUET_raw"
|
||||
# , "Lig_raw"
|
||||
# , "OR"
|
||||
, "Log(Odds Ratio)"
|
||||
# , "P-value"
|
||||
, "-LogP"
|
||||
, "Allele Frequency"
|
||||
# , "DUET_outcome"
|
||||
, "Lig_outcome"
|
||||
, "pyrazinamide")
|
||||
|
||||
# sanity check
|
||||
if (length(my_corr_colnames) == length(corr_data)){
|
||||
print("Sanity check passed: corr_data and corr_names match in length")
|
||||
}else{
|
||||
print("Error: length mismatch!")
|
||||
}
|
||||
|
||||
colnames(corr_data)
|
||||
colnames(corr_data) <- my_corr_colnames
|
||||
colnames(corr_data)
|
||||
|
||||
###############
|
||||
# PLOTS: corr
|
||||
# http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs
|
||||
###############
|
||||
|
||||
# default pairs plot
|
||||
start = 1
|
||||
end = which(colnames(corr_data) == "pyrazinamide"); end # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_corr = corr_data[start:(end-offset)]
|
||||
head(my_corr)
|
||||
|
||||
#my_cols = c("#f8766d", "#00bfc4")
|
||||
# deep blue :#007d85
|
||||
# deep red: #ae301e
|
||||
|
||||
#==========
|
||||
# psych: ionformative since it draws the ellipsoid
|
||||
# https://jamesmarquezportfolio.com/correlation_matrices_in_r.html
|
||||
# http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs
|
||||
#==========
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots"
|
||||
getwd()
|
||||
|
||||
svg('Lig_corr.svg', width = 15, height = 15)
|
||||
printFile = pairs.panels(my_corr[1:4]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr$Lig_outcome))]
|
||||
, pch = 21
|
||||
, jitter = T
|
||||
# , alpha = .05
|
||||
# , points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 3
|
||||
, cex.axis = 2.5
|
||||
, cex.labels = 3
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
print(printFile)
|
||||
dev.off()
|
||||
|
|
@ -1,227 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
require(data.table)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2, comprehensive one
|
||||
# since this has one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
#==========================
|
||||
# Plot: Lineage barplot
|
||||
# x = lineage y = No. of samples
|
||||
# col = Lineage
|
||||
# fill = lineage
|
||||
#============================
|
||||
table(my_df$lineage)
|
||||
|
||||
# lineage1 lineage2 lineage3 lineage4 lineage5 lineage6 lineageBOV
|
||||
#3 104 1293 264 1311 6 6 105
|
||||
|
||||
#===========================
|
||||
# Plot: Lineage Barplots
|
||||
#===========================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
df <- my_df
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
rm(my_df)
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
#setDT(df)[, lineage_count := .N, by = .(lineage)]
|
||||
|
||||
#******************
|
||||
# generate plot: barplot of mutation by lineage
|
||||
#******************
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
|
||||
df_lin = subset(df, subset = lineage %in% sel_lineages )
|
||||
|
||||
#FIXME; add sanity check for numbers.
|
||||
# Done this manually
|
||||
|
||||
############################################################
|
||||
|
||||
#########
|
||||
# Data for barplot: Lineage barplot
|
||||
# to show total samples and number of unique mutations
|
||||
# within each linege
|
||||
##########
|
||||
|
||||
# Create df with lineage inform & no. of unique mutations
|
||||
# per lineage and total samples within lineage
|
||||
# this is essentially barplot with two y axis
|
||||
|
||||
bar = bar = as.data.frame(sel_lineages) #4, 1
|
||||
total_snps_u = NULL
|
||||
total_samples = NULL
|
||||
|
||||
for (i in sel_lineages){
|
||||
#print(i)
|
||||
curr_total = length(unique(df$id)[df$lineage==i])
|
||||
total_samples = c(total_samples, curr_total)
|
||||
print(total_samples)
|
||||
|
||||
foo = df[df$lineage==i,]
|
||||
print(paste0(i, "======="))
|
||||
print(length(unique(foo$Mutationinformation)))
|
||||
curr_count = length(unique(foo$Mutationinformation))
|
||||
|
||||
total_snps_u = c(total_snps_u, curr_count)
|
||||
}
|
||||
|
||||
print(total_snps_u)
|
||||
bar$num_snps_u = total_snps_u
|
||||
bar$total_samples = total_samples
|
||||
bar
|
||||
|
||||
#*****************
|
||||
# generate plot: lineage barplot with two y-axis
|
||||
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
|
||||
#*****************
|
||||
|
||||
bar$num_snps_u = y1
|
||||
bar$total_samples = y2
|
||||
sel_lineages = x
|
||||
|
||||
to_plot = data.frame(x = x
|
||||
, y1 = y1
|
||||
, y2 = y2)
|
||||
to_plot
|
||||
|
||||
melted = melt(to_plot, id = "x")
|
||||
melted
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
svg('lineage_basic_barplot.svg')
|
||||
|
||||
my_ats = 20 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
g = ggplot(melted
|
||||
, aes(x = x
|
||||
, y = value
|
||||
, fill = variable)
|
||||
)
|
||||
|
||||
|
||||
printFile = g + geom_bar(
|
||||
|
||||
#g + geom_bar(
|
||||
stat = "identity"
|
||||
, position = position_stack(reverse = TRUE)
|
||||
, alpha=.75
|
||||
, colour='grey75'
|
||||
) + theme(
|
||||
axis.text.x = element_text(
|
||||
size = my_ats
|
||||
# , angle= 30
|
||||
)
|
||||
, axis.text.y = element_text(size = my_ats
|
||||
#, angle = 30
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(
|
||||
size = my_als
|
||||
, colour = 'black'
|
||||
)
|
||||
, axis.title.y = element_text(
|
||||
size = my_als
|
||||
, colour = 'black'
|
||||
)
|
||||
, legend.position = "top"
|
||||
, legend.text = element_text(size = my_als)
|
||||
|
||||
#) + geom_text(
|
||||
) + geom_label(
|
||||
aes(label = value)
|
||||
, size = 5
|
||||
, hjust = 0.5
|
||||
, vjust = 0.5
|
||||
, colour = 'black'
|
||||
, show.legend = FALSE
|
||||
#, check_overlap = TRUE
|
||||
, position = position_stack(reverse = T)
|
||||
#, position = ('
|
||||
|
||||
) + labs(
|
||||
title = ''
|
||||
, x = ''
|
||||
, y = "Number"
|
||||
, fill = 'Variable'
|
||||
, colour = 'black'
|
||||
) + scale_fill_manual(
|
||||
values = c('grey50', 'gray75')
|
||||
, name=''
|
||||
, labels=c('Mutations', 'Total Samples')
|
||||
) + scale_x_discrete(
|
||||
breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
|
||||
)
|
||||
print(printFile)
|
||||
dev.off()
|
|
@ -1,253 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
#require(data.table)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for Lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info)
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(my_df$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
#==========================
|
||||
# Data for plot: assign as
|
||||
# necessary
|
||||
#===========================
|
||||
|
||||
# uncomment as necessary
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
|
||||
#==================
|
||||
# data for ALL muts
|
||||
#==================
|
||||
plot_df = my_df
|
||||
my_plot_name = 'lineage_dist_PS.svg'
|
||||
#my_plot_name = 'lineage_dist_PS_comp.svg'
|
||||
|
||||
#=======================
|
||||
# data for dr_muts ONLY
|
||||
#=======================
|
||||
#plot_df = my_df_dr
|
||||
#my_plot_name = 'lineage_dist_dr_PS.svg'
|
||||
#my_plot_name = 'lineage_dist_dr_PS_comp.svg'
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
#==========================
|
||||
# Plot: Lineage Distribution
|
||||
# x = mcsm_values, y = dist
|
||||
# fill = stability
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
|
||||
# uncomment as necessary
|
||||
df_lin = subset(my_df, subset = lineage %in% sel_lineages ) #2037 35
|
||||
|
||||
# refactor
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
table(df_lin$lineage) #{RESULT: No of samples within lineage}
|
||||
#lineage1 lineage2 lineage3 lineage4
|
||||
#78 961 195 803
|
||||
|
||||
# when merged_df2_comp is used
|
||||
#lineage1 lineage2 lineage3 lineage4
|
||||
#77 955 194 770
|
||||
|
||||
length(unique(df_lin$Mutationinformation))
|
||||
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
|
||||
# sanity checks
|
||||
r1 = 2:5 # when merged_df2 used: because there is missing lineages
|
||||
if(sum(table(my_df$lineage)[r1]) == nrow(df_lin)) {
|
||||
print ("sanity check passed: numbers match")
|
||||
} else{
|
||||
print("Error!: check your numbers")
|
||||
}
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
df <- df_lin
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
rm(df_lin)
|
||||
|
||||
#******************
|
||||
# generate distribution plot of lineages
|
||||
#******************
|
||||
# basic: could improve this!
|
||||
library(plotly)
|
||||
library(ggridges)
|
||||
|
||||
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
|
||||
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||
|
||||
g <- ggplot(df, aes(x = ratioPredAff)) +
|
||||
geom_density(aes(fill = Lig_outcome)
|
||||
, alpha = 0.5) +
|
||||
facet_wrap( ~ lineage
|
||||
, scales = "free"
|
||||
, labeller = labeller(lineage = my_labels) ) +
|
||||
coord_cartesian(xlim = c(-1, 1)
|
||||
# , ylim = c(0, 6)
|
||||
# , clip = "off"
|
||||
)
|
||||
ggtitle("Kernel Density estimates of Ligand affinity by lineage")
|
||||
|
||||
ggplotly(g)
|
||||
|
||||
# 2 : ggridges (good!)
|
||||
|
||||
my_ats = 15 # axis text size
|
||||
my_als = 20 # axis label size
|
||||
|
||||
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
|
||||
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
# check plot name
|
||||
my_plot_name
|
||||
|
||||
svg(my_plot_name)
|
||||
|
||||
printFile = ggplot( df, aes(x = ratioPredAff
|
||||
, y = Lig_outcome) ) +
|
||||
|
||||
geom_density_ridges_gradient( aes(fill = ..x..)
|
||||
, scale = 3
|
||||
, size = 0.3 ) +
|
||||
facet_wrap( ~lineage
|
||||
, scales = "free"
|
||||
# , switch = 'x'
|
||||
, labeller = labeller(lineage = my_labels) ) +
|
||||
coord_cartesian( xlim = c(-1, 1)
|
||||
# , ylim = c(0, 6)
|
||||
# , clip = "off"
|
||||
) +
|
||||
|
||||
scale_fill_gradientn( colours = c("#f8766d", "white", "#00bfc4")
|
||||
, name = "Ligand Affinity" ) +
|
||||
theme( axis.text.x = element_text( size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
# , axis.text.y = element_text( size = my_ats
|
||||
# , angle = 0
|
||||
# , hjust = 1
|
||||
# , vjust = 0)
|
||||
, axis.text.y = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_blank()
|
||||
, axis.ticks.y = element_blank()
|
||||
, plot.title = element_blank()
|
||||
, strip.text = element_text(size = my_als)
|
||||
, legend.text = element_text(size = 10)
|
||||
, legend.title = element_text(size = my_als)
|
||||
# , legend.position = c(0.3, 0.8)
|
||||
# , legend.key.height = unit(1, 'mm')
|
||||
)
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
||||
#===================================================
|
||||
|
||||
# COMPARING DISTRIBUTIONS
|
||||
head(df$lineage)
|
||||
df$lineage = as.character(df$lineage)
|
||||
|
||||
lin1 = df[df$lineage == "lineage1",]$ratioPredAff
|
||||
lin2 = df[df$lineage == "lineage2",]$ratioPredAff
|
||||
lin3 = df[df$lineage == "lineage3",]$ratioPredAff
|
||||
lin4 = df[df$lineage == "lineage4",]$ratioPredAff
|
||||
|
||||
# ks test
|
||||
ks.test(lin1,lin2)
|
||||
ks.test(lin1,lin3)
|
||||
ks.test(lin1,lin4)
|
||||
|
||||
ks.test(lin2,lin3)
|
||||
ks.test(lin2,lin4)
|
||||
|
||||
ks.test(lin3,lin4)
|
||||
|
||||
|
||||
|
|
@ -1,229 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#require(data.table)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for pyrazinamide:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA for pyrazinamide:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info); str(my_df$mutation_info)
|
||||
|
||||
# subset df with dr muts only
|
||||
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
|
||||
table(my_df_dr$mutation_info)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Run two times:
|
||||
# uncomment as necessary
|
||||
# 1) for all muts
|
||||
# 2) for dr_muts
|
||||
#===========================
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
|
||||
#================
|
||||
# for ALL muts
|
||||
#================
|
||||
plot_df = my_df
|
||||
my_plot_name = 'lineage_dist_PS.svg'
|
||||
#my_plot_name = 'lineage_dist_PS_comp.svg'
|
||||
|
||||
#================
|
||||
# for dr muts ONLY
|
||||
#================
|
||||
#plot_df = my_df_dr
|
||||
#my_plot_name = 'lineage_dist_dr_PS.svg'
|
||||
#my_plot_name = 'lineage_dist_dr_PS_comp.svg'
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#==========================
|
||||
# Plot: Lineage Distribution
|
||||
# x = mcsm_values, y = dist
|
||||
# fill = stability
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
table(plot_df$lineage); str(plot_df$lineage)
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
|
||||
# uncomment as necessary
|
||||
df_lin = subset(plot_df, subset = lineage %in% sel_lineages )
|
||||
|
||||
# refactor
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
table(df_lin$lineage) #{RESULT: No of samples within lineage}
|
||||
#lineage1 lineage2 lineage3 lineage4
|
||||
|
||||
length(unique(df_lin$Mutationinformation))
|
||||
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
|
||||
# sanity checks
|
||||
r1 = 2:5 # when merged_df2 used: because there is missing lineages
|
||||
if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) {
|
||||
print ("sanity check passed: numbers match")
|
||||
} else{
|
||||
print("Error!: check your numbers")
|
||||
}
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
df <- df_lin
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(df_lin)
|
||||
|
||||
#******************
|
||||
# generate distribution plot of lineages
|
||||
#******************
|
||||
# basic: could improve this!
|
||||
#library(plotly)
|
||||
#library(ggridges)
|
||||
|
||||
g <- ggplot(df, aes(x = ratioDUET)) +
|
||||
geom_density(aes(fill = DUET_outcome)
|
||||
, alpha = 0.5) + facet_wrap(~ lineage,
|
||||
scales = "free") +
|
||||
ggtitle("Kernel Density estimates of Protein stability by lineage")
|
||||
|
||||
ggplotly(g)
|
||||
|
||||
# 2 : ggridges (good!)
|
||||
my_ats = 15 # axis text size
|
||||
my_als = 20 # axis label size
|
||||
|
||||
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
|
||||
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||
|
||||
# set output dir for plots
|
||||
getwd()
|
||||
setwd("~/git/Data/pyrazinamide/output/plots")
|
||||
getwd()
|
||||
|
||||
# check plot name
|
||||
my_plot_name
|
||||
|
||||
# output svg
|
||||
svg(my_plot_name)
|
||||
printFile = ggplot(df, aes(x = ratioDUET
|
||||
, y = DUET_outcome))+
|
||||
|
||||
#printFile=geom_density_ridges_gradient(
|
||||
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||
, scale = 3
|
||||
, size = 0.3 ) +
|
||||
facet_wrap( ~lineage
|
||||
, scales = "free"
|
||||
# , switch = 'x'
|
||||
, labeller = labeller(lineage = my_labels) ) +
|
||||
coord_cartesian( xlim = c(-1, 1)
|
||||
# , ylim = c(0, 6)
|
||||
# , clip = "off"
|
||||
) +
|
||||
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
|
||||
, name = "DUET" ) +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
# , axis.text.y = element_text(size = my_ats
|
||||
# , angle = 0
|
||||
# , hjust = 1
|
||||
# , vjust = 0)
|
||||
, axis.text.y = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_blank()
|
||||
, axis.ticks.y = element_blank()
|
||||
, plot.title = element_blank()
|
||||
, strip.text = element_text(size = my_als)
|
||||
, legend.text = element_text(size = 10)
|
||||
, legend.title = element_text(size = my_als)
|
||||
# , legend.position = c(0.3, 0.8)
|
||||
# , legend.key.height = unit(1, 'mm')
|
||||
)
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
||||
|
||||
#=!=!=!=!=!=!=!
|
||||
# COMMENT: Not much differences in the distributions
|
||||
# when using merged_df2 or merged_df2_comp.
|
||||
# Also, the lineage differences disappear when looking at all muts
|
||||
# The pattern we are interested in is possibly only for dr_mutations
|
||||
#=!=!=!=!=!=!=!
|
||||
#===================================================
|
||||
|
||||
# COMPARING DISTRIBUTIONS: KS test
|
||||
# run: "../KS_test_PS.R"
|
||||
|
||||
|
||||
|
|
@ -1,250 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
library(ggseqlogo)
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# msa file: output of generate_mut_sequences.py
|
||||
#############
|
||||
homedir = '~'
|
||||
indir = 'git/Data/pyrazinamide/output'
|
||||
in_filename = "gene_msa.txt"
|
||||
infile = paste0(homedir, '/', indir,'/', in_filename)
|
||||
print(infile)
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# combined dfs
|
||||
#############
|
||||
source("../combining_two_df.R")
|
||||
|
||||
###########################
|
||||
# Data for Logo plots
|
||||
# you need big df i.e
|
||||
# merged_df2
|
||||
# or
|
||||
# merged_df2_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df2
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# doesn't work if you use the big df as it has duplicate snps
|
||||
#rownames(my_df) = my_df$Mutationinformation
|
||||
|
||||
# sanity check: should be True
|
||||
table(my_df$position == my_df$Position)
|
||||
|
||||
c1 = unique(my_df$Position) # 130
|
||||
nrow(my_df) # 3092
|
||||
|
||||
#FIXME
|
||||
#!!! RESOLVE !!!
|
||||
# get freq count of positions and add to the df
|
||||
setDT(my_df)[, occurrence_sample := .N, by = .(id)]
|
||||
table(my_df$occurrence_sample)
|
||||
|
||||
|
||||
my_df2 = my_df %>%
|
||||
select(id, Mutationinformation, Wild_type, WildPos, position, Mutant_type, occurrence, occurrence_sample)
|
||||
|
||||
write.csv(my_df2, "my_df2.csv")
|
||||
|
||||
# extract freq_pos>1 since this will not add to much in the logo plot
|
||||
# pos 5 has one mutation but coming from atleast 5 samples?
|
||||
table(my_df$occurrence)
|
||||
foo = my_df[my_df$occurrence ==1,]
|
||||
|
||||
# uncomment as necessary
|
||||
my_data_snp = my_df #3092
|
||||
|
||||
#!!! RESOLVE
|
||||
# FIXME
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #3072, 36...3019
|
||||
|
||||
u = unique(my_data_snp$Position) #96
|
||||
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#########################################################
|
||||
# Task: To generate a logo plot or bar plot but coloured
|
||||
# aa properties.
|
||||
# step1: read mcsm file and OR file
|
||||
# step2: plot wild type positions
|
||||
# step3: plot mutants per position coloured by aa properties
|
||||
# step4: make the size of the letters/bars prop to OR if you can!
|
||||
#########################################################
|
||||
##useful links
|
||||
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#https://omarwagih.github.io/ggseqlogo/
|
||||
#https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
#A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
|
||||
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
#==============
|
||||
# matrix for mutant type
|
||||
# frequency of mutant type by position
|
||||
#==============
|
||||
table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
class(tab_mt)
|
||||
# unclass to convert to matrix
|
||||
tab_mt = unclass(tab_mt)
|
||||
tab_mt = as.matrix(tab_mt, rownames = T)
|
||||
|
||||
# should be TRUE
|
||||
is.matrix(tab_mt)
|
||||
|
||||
rownames(tab_mt) #aa
|
||||
colnames(tab_mt) #pos
|
||||
|
||||
#**********************
|
||||
# Plot 1: mutant logo
|
||||
#**********************
|
||||
my_ymax = max(my_data_snp$occurrence); my_ymax
|
||||
my_ylim = c(0,my_ymax) # very important
|
||||
|
||||
# axis sizes
|
||||
# common: text and label
|
||||
my_ats = 15
|
||||
my_als = 20
|
||||
|
||||
# individual: text and label
|
||||
my_xats = 15
|
||||
my_yats = 20
|
||||
my_xals = 15
|
||||
my_yals = 20
|
||||
|
||||
# legend size: text and label
|
||||
my_lts = 20
|
||||
#my_lls = 20
|
||||
|
||||
# Color scheme based on chemistry of amino acids
|
||||
chemistry = data.frame(
|
||||
letter = c('G', 'S', 'T', 'Y', 'C', 'N', 'Q', 'K', 'R', 'H', 'D', 'E', 'P', 'A', 'W', 'F', 'L', 'I', 'M', 'V'),
|
||||
group = c(rep('Polar', 5), rep('Neutral', 2), rep('Basic', 3), rep('Acidic', 2), rep('Hydrophobic', 8)),
|
||||
col = c(rep('#109648', 5), rep('#5E239D', 2), rep('#255C99', 3), rep('#D62839', 2), rep('#221E22', 8)),
|
||||
stringsAsFactors = F
|
||||
)
|
||||
|
||||
# uncomment as necessary
|
||||
my_type = "EDLogo"
|
||||
#my_type = "Logo"
|
||||
|
||||
logomaker(tab_mt
|
||||
, type = my_type
|
||||
, return_heights = T
|
||||
# , color_type = "per_row"
|
||||
# , colors = chemistry$col
|
||||
# , method = 'custom'
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts )
|
||||
, axis.text.x = element_text(size = my_ats , angle = 90)
|
||||
, axis.text.y = element_text(size = my_ats , angle = 90))
|
||||
|
||||
p0 = logomaker(tab_mt
|
||||
, type = my_type
|
||||
, return_heights = T
|
||||
, color_type = "per_row"
|
||||
, colors = chemistry$col
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
#ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
# theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
, limits = my_ylim)
|
||||
|
||||
p0
|
||||
|
||||
# further customisation
|
||||
p1 = p0 + theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_ats , angle = 90)
|
||||
, axis.text.y = element_text(size = my_ats , angle = 90))
|
||||
p1
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# msa file: output of generate_mut_sequences.py
|
||||
#############
|
||||
homedir = '~'
|
||||
indir = 'git/Data/pyrazinamide/output'
|
||||
in_filename = "gene_msa.txt"
|
||||
infile = paste0(homedir, '/', indir,'/', in_filename)
|
||||
print(infile)
|
||||
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
snps = read.csv(infile
|
||||
, stringsAsFactors = F
|
||||
, header = F) #3072,
|
||||
|
||||
class(snps); str(snps) # df and chr
|
||||
|
||||
# turn to a character vector
|
||||
snps2 = as.character(snps[1:nrow(snps),])
|
||||
|
||||
class(snps2); str(snps2) #character, chr
|
||||
|
||||
# plot
|
||||
logomaker(snps2, type = my_type
|
||||
, color_type = "per_row") +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 0:5
|
||||
, limits = my_ylim)
|
||||
|
||||
|
|
@ -1,273 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git//LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
# TASK: Multiple mutations per site
|
||||
# as aa symbol coloured by aa property
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
library(ggseqlogo)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "/home/tanu/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
#merged_df2 # 3092, 35
|
||||
#merged_df2_comp #3012, 35
|
||||
|
||||
#merged_df3 #335, 35
|
||||
#merged_df3_comp #293, 35
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for Logo plots
|
||||
# you need small df i.e
|
||||
# merged_df3
|
||||
# or
|
||||
# merged_df3_comp? possibly
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3 # to show multiple mutations per site
|
||||
my_df = read.csv(file.choose())
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
rownames(my_df) = my_df$Mutationinformation
|
||||
|
||||
c1 = unique(my_df$Position) #130
|
||||
nrow(my_df) #335
|
||||
|
||||
table(my_df$occurrence)
|
||||
#1 2 3 4 5 6
|
||||
#34 76 63 104 40 18
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
#: already done in teh combining script
|
||||
#require(data.table)
|
||||
#setDT(my_df)[, occurrence := .N, by = .(Position)] #189, 36
|
||||
|
||||
table(my_df$Position); table(my_df$occurrence)
|
||||
|
||||
# extract freq_pos>1
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #301, 36
|
||||
u_pos = unique(my_data_snp$Position) #96
|
||||
|
||||
# sanity check
|
||||
exp_dim = nrow(my_df) - table(my_df$occurrence)[[1]]; exp_dim
|
||||
if ( nrow(my_data_snp) == exp_dim ){
|
||||
print("Sanity check passed: Data filtered correctly, dim match")
|
||||
} else {
|
||||
print("Error: Please Debug")
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#########################################################
|
||||
# Task: To generate a logo plot or bar plot but coloured
|
||||
# aa properties.
|
||||
# step1: read data file
|
||||
# step2: plot wild type positions
|
||||
# step3: plot mutants per position coloured by aa properties
|
||||
# step4: make the size of the letters/bars prop to OR if you can!
|
||||
#########################################################
|
||||
# useful links
|
||||
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
# https://omarwagih.github.io/ggseqlogo/
|
||||
# https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
# A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
# very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
|
||||
#############
|
||||
# PLOTS: Bar plot with aa properties
|
||||
# using gglogo
|
||||
# useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#############
|
||||
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
|
||||
#==============
|
||||
# matrix for mutant type
|
||||
# frequency of mutant type by position
|
||||
#==============
|
||||
table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
class(tab_mt)
|
||||
|
||||
# unclass to convert to matrix
|
||||
tab_mt = unclass(tab_mt)
|
||||
tab_mt = as.matrix(tab_mt, rownames = T)
|
||||
|
||||
# should be TRUE
|
||||
is.matrix(tab_mt)
|
||||
|
||||
rownames(tab_mt) #aa
|
||||
colnames(tab_mt) #pos
|
||||
|
||||
#==============
|
||||
# matrix for wild type
|
||||
# frequency of wild type by position
|
||||
#==============
|
||||
# remove wt duplicates
|
||||
wt = my_data_snp[, c("Position", "Wild_type")] #301, 2
|
||||
wt = wt[!duplicated(wt),]#96, 2
|
||||
|
||||
table(wt$Wild_type) # contains duplicates
|
||||
|
||||
tab_wt = table(wt$Wild_type, wt$Position); tab_wt # should all be 1
|
||||
|
||||
tab_wt = unclass(tab_wt) #important
|
||||
class(tab_wt); rownames(tab_wt)
|
||||
#tab_wt = as.matrix(tab_wt, rownames = T)
|
||||
|
||||
rownames(tab_wt)
|
||||
rownames(tab_mt)
|
||||
|
||||
# sanity check
|
||||
if (ncol(tab_wt) == length(u_pos) ){
|
||||
print("Sanity check passed: wt data dim match")
|
||||
} else {
|
||||
print("Error: Please debug")
|
||||
}
|
||||
|
||||
#**************
|
||||
# Plot 1: mutant logo
|
||||
#**************
|
||||
#install.packages("digest")
|
||||
#library(digest)
|
||||
# following example
|
||||
require(ggplot2)
|
||||
require(reshape2)
|
||||
library(gglogo)
|
||||
library(ggrepel)
|
||||
library(ggseqlogo)
|
||||
|
||||
# generate seq logo for mutant type
|
||||
my_ymax = max(my_data_snp$occurrence); my_ymax
|
||||
my_ylim = c(0, my_ymax)
|
||||
#my_yrange = 1:my_ymax; my_yrange
|
||||
|
||||
# axis sizes
|
||||
# common: text and label
|
||||
my_ats = 15
|
||||
my_als = 20
|
||||
|
||||
# individual: text and label
|
||||
my_xats = 15
|
||||
my_yats = 20
|
||||
my_xals = 15
|
||||
my_yals = 20
|
||||
|
||||
# legend size: text and label
|
||||
my_lts = 20
|
||||
#my_lls = 20
|
||||
|
||||
p0 = ggseqlogo(tab_mt
|
||||
, method = 'custom'
|
||||
, seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
# ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab_mt)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
, limits = my_ylim)
|
||||
|
||||
p0
|
||||
|
||||
# further customisation
|
||||
p1 = p0 + theme(legend.position = "none"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_xats, angle = 90)
|
||||
, axis.text.y = element_text(size = my_yats, angle = 90))
|
||||
p1
|
||||
|
||||
#**************
|
||||
# Plot 2: for wild_type
|
||||
# with custom x axis to reflect my aa positions
|
||||
#**************
|
||||
# sanity check: MUST BE TRUE
|
||||
# for the correctnes of the x axis
|
||||
identical(colnames(tab_mt), colnames(tab_wt))
|
||||
identical(ncol(tab_mt), ncol(tab_wt))
|
||||
|
||||
p2 = ggseqlogo(tab_wt
|
||||
, method = 'custom'
|
||||
, seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = chemistry2
|
||||
) +
|
||||
# ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()
|
||||
, axis.text.y = element_blank()) +
|
||||
theme_logo() +
|
||||
scale_x_continuous(breaks = 1:ncol(tab_wt)
|
||||
, labels = colnames(tab_wt)) +
|
||||
scale_y_continuous( breaks = 0:1
|
||||
, limits = my_ylim )
|
||||
|
||||
p2
|
||||
|
||||
# further customise
|
||||
|
||||
p3 = p2 +
|
||||
theme(legend.position = "bottom"
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_ats
|
||||
, angle = 90)
|
||||
, axis.text.y = element_blank())
|
||||
|
||||
p3
|
||||
|
||||
|
||||
# Now combine using cowplot, which ensures the plots are aligned
|
||||
suppressMessages( require(cowplot) )
|
||||
|
||||
plot_grid(p1, p3, ncol = 1, align = 'v') #+
|
||||
# background_grid(minor = "xy"
|
||||
# , size.minor = 1
|
||||
# , colour.minor = "grey86")
|
||||
|
||||
|
||||
#colour scheme
|
||||
#https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
||||
|
|
@ -1,208 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#library(tidyverse)
|
||||
|
||||
###########################
|
||||
#2: Read file: normalised file, output of step 4 mcsm pipeline
|
||||
###########################
|
||||
#my_df <- read.csv("../../Data/mcsm_complex1_normalised.csv"
|
||||
# , row.names = 1
|
||||
# , stringsAsFactors = F
|
||||
# , header = T)
|
||||
|
||||
# call script combining_df
|
||||
source("../combining_two_df_lig.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
# from Plotting to Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for pyrazinamide:
|
||||
#merged_df2
|
||||
#merged_df2_comp
|
||||
|
||||
# df without NA for pyrazinamide:
|
||||
#merged_df3
|
||||
#merged_df3_comp
|
||||
#==========================
|
||||
###########################
|
||||
# Data to choose:
|
||||
# We will be using the small dfs
|
||||
# to generate the coloured axis
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
str(my_df)
|
||||
my_df$Position
|
||||
c1 = my_df[my_df$Mutationinformation == "A134V",]
|
||||
|
||||
# order my_df by Position
|
||||
my_df_o = my_df[order(my_df$Position),]
|
||||
head(my_df_o$Position); tail(my_df_o$Position)
|
||||
|
||||
c2 = my_df_o[my_df_o$Mutationinformation == "A134V",]
|
||||
|
||||
# sanity check
|
||||
if (sum(table(c1 == c2)) == ncol(my_df)){
|
||||
print ("Sanity check passsd")
|
||||
}else{
|
||||
print ("Error!: Please debug your code")
|
||||
}
|
||||
|
||||
rm(my_df, c1, c2)
|
||||
|
||||
# create a new df with unique position numbers and cols
|
||||
Position = unique(my_df_o$Position)
|
||||
Position_cols = as.data.frame(Position)
|
||||
|
||||
head(Position_cols) ; tail(Position_cols)
|
||||
|
||||
# specify active site residues and bg colour
|
||||
Position = c(49, 51, 57, 71
|
||||
, 8, 96, 138
|
||||
, 13, 68
|
||||
, 103, 137
|
||||
, 133, 134) #13
|
||||
|
||||
lab_bg = rep(c("purple"
|
||||
, "yellow"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4, 3, 2, 2, 2)
|
||||
)
|
||||
|
||||
# second bg colour for active site residues
|
||||
#lab_bg2 = rep(c("white"
|
||||
# , "green" , "white", "green"
|
||||
# , "white"
|
||||
# , "white"
|
||||
# , "white"), times = c(4
|
||||
# , 1, 1, 1
|
||||
# , 2
|
||||
# , 2
|
||||
# , 2)
|
||||
#)
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: leave the second box coloured as the first one incase there is no second colour
|
||||
#%%%%%%%%%
|
||||
lab_bg2 = rep(c("purple"
|
||||
, "green", "yellow", "green"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4
|
||||
, 1, 1, 1
|
||||
, 2
|
||||
, 2
|
||||
, 2))
|
||||
|
||||
# fg colour for labels for active site residues
|
||||
lab_fg = rep(c("white"
|
||||
, "black"
|
||||
, "black"
|
||||
, "white"
|
||||
, "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: make the purple ones black
|
||||
# fg colour for labels for active site residues
|
||||
#%%%%%%%%%
|
||||
#lab_fg = rep(c("black"
|
||||
# , "black"
|
||||
# , "black"
|
||||
# , "white"
|
||||
# , "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
# combined df with active sites, bg and fg colours
|
||||
aa_cols_ref = data.frame(Position
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, stringsAsFactors = F) #13, 4
|
||||
|
||||
str(Position_cols); class(Position_cols)
|
||||
str(aa_cols_ref); class(aa_cols_ref)
|
||||
|
||||
# since Position is int and numeric in the two dfs resp,
|
||||
# converting numeric to int for consistency
|
||||
aa_cols_ref$Position = as.integer(aa_cols_ref$Position)
|
||||
class(aa_cols_ref$Position)
|
||||
|
||||
#===========
|
||||
# Merge 1: merging Positions df (Position_cols) and
|
||||
# active site cols (aa_cols_ref)
|
||||
# linking column: "Position"
|
||||
# This is so you can have colours defined for all 130 positions
|
||||
#===========
|
||||
head(Position_cols$Position); head(aa_cols_ref$Position)
|
||||
|
||||
mut_pos_cols = merge(Position_cols, aa_cols_ref
|
||||
, by = "Position"
|
||||
, all.x = TRUE)
|
||||
|
||||
head(mut_pos_cols)
|
||||
# replace NA's
|
||||
# :column "lab_bg" with "white"
|
||||
# : column "lab_fg" with "black"
|
||||
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
||||
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
||||
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
||||
head(mut_pos_cols)
|
||||
|
||||
#===========
|
||||
# Merge 2: Merge mut_pos_cols with mcsm df
|
||||
# Now combined the 130 positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df_o
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$Position); tail(df0$Position)
|
||||
head(df1$Position); tail(df1$Position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df = merge(df0, df1
|
||||
, by = "Position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$Position == "49",]
|
||||
my_df[my_df$Position == "13",]
|
||||
|
||||
my_df$Position
|
||||
|
||||
# clear variables
|
||||
rm(aa_cols_ref
|
||||
, df0
|
||||
, df1
|
||||
, my_df_o
|
||||
, Position_cols
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, Position
|
||||
)
|
||||
|
|
@ -1,208 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#library(tidyverse)
|
||||
|
||||
###########################
|
||||
#2: Read file: normalised file, output of step 4 mcsm pipeline
|
||||
###########################
|
||||
#my_df <- read.csv("../../Data/mcsm_complex1_normalised.csv"
|
||||
# , row.names = 1
|
||||
# , stringsAsFactors = F
|
||||
# , header = T)
|
||||
|
||||
# call script combining_df
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
# from Plotting to Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for pyrazinamide:
|
||||
#merged_df2
|
||||
#merged_df2_comp
|
||||
|
||||
# df without NA for pyrazinamide:
|
||||
#merged_df3
|
||||
#merged_df3_comp
|
||||
#==========================
|
||||
###########################
|
||||
# Data to choose:
|
||||
# We will be using the small dfs
|
||||
# to generate the coloured axis
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#my_df = merged_df3_comp
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
str(my_df)
|
||||
my_df$Position
|
||||
c1 = my_df[my_df$Mutationinformation == "L4S",]
|
||||
|
||||
# order my_df by Position
|
||||
my_df_o = my_df[order(my_df$Position),]
|
||||
head(my_df_o$Position); tail(my_df_o$Position)
|
||||
|
||||
c2 = my_df_o[my_df_o$Mutationinformation == "L4S",]
|
||||
|
||||
# sanity check
|
||||
if (sum(table(c1 == c2)) == ncol(my_df)){
|
||||
print ("Sanity check passsd")
|
||||
}else{
|
||||
print ("Error!: Please debug your code")
|
||||
}
|
||||
|
||||
rm(my_df, c1, c2)
|
||||
|
||||
# create a new df with unique position numbers and cols
|
||||
Position = unique(my_df_o$Position) #130
|
||||
Position_cols = as.data.frame(Position)
|
||||
|
||||
head(Position_cols) ; tail(Position_cols)
|
||||
|
||||
# specify active site residues and bg colour
|
||||
Position = c(49, 51, 57, 71
|
||||
, 8, 96, 138
|
||||
, 13, 68
|
||||
, 103, 137
|
||||
, 133, 134) #13
|
||||
|
||||
lab_bg = rep(c("purple"
|
||||
, "yellow"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4, 3, 2, 2, 2)
|
||||
)
|
||||
|
||||
# second bg colour for active site residues
|
||||
#lab_bg2 = rep(c("white"
|
||||
# , "green" , "white", "green"
|
||||
# , "white"
|
||||
# , "white"
|
||||
# , "white"), times = c(4
|
||||
# , 1, 1, 1
|
||||
# , 2
|
||||
# , 2
|
||||
# , 2)
|
||||
#)
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: leave the second box coloured as the first one incase there is no second colour
|
||||
#%%%%%%%%%
|
||||
lab_bg2 = rep(c("purple"
|
||||
, "green", "yellow", "green"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4
|
||||
, 1, 1, 1
|
||||
, 2
|
||||
, 2
|
||||
, 2))
|
||||
|
||||
# fg colour for labels for active site residues
|
||||
lab_fg = rep(c("white"
|
||||
, "black"
|
||||
, "black"
|
||||
, "white"
|
||||
, "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: make the purple ones black
|
||||
# fg colour for labels for active site residues
|
||||
#%%%%%%%%%
|
||||
#lab_fg = rep(c("black"
|
||||
# , "black"
|
||||
# , "black"
|
||||
# , "white"
|
||||
# , "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
# combined df with active sites, bg and fg colours
|
||||
aa_cols_ref = data.frame(Position
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, stringsAsFactors = F) #13, 4
|
||||
|
||||
str(Position_cols); class(Position_cols)
|
||||
str(aa_cols_ref); class(aa_cols_ref)
|
||||
|
||||
# since Position is int and numeric in the two dfs resp,
|
||||
# converting numeric to int for consistency
|
||||
aa_cols_ref$Position = as.integer(aa_cols_ref$Position)
|
||||
class(aa_cols_ref$Position)
|
||||
|
||||
#===========
|
||||
# Merge 1: merging Positions df (Position_cols) and
|
||||
# active site cols (aa_cols_ref)
|
||||
# linking column: "Position"
|
||||
# This is so you can have colours defined for all 130 positions
|
||||
#===========
|
||||
head(Position_cols$Position); head(aa_cols_ref$Position)
|
||||
|
||||
mut_pos_cols = merge(Position_cols, aa_cols_ref
|
||||
, by = "Position"
|
||||
, all.x = TRUE)
|
||||
|
||||
head(mut_pos_cols)
|
||||
# replace NA's
|
||||
# :column "lab_bg" with "white"
|
||||
# : column "lab_fg" with "black"
|
||||
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
||||
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
||||
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
||||
head(mut_pos_cols)
|
||||
|
||||
#===========
|
||||
# Merge 2: Merge mut_pos_cols with mcsm df
|
||||
# Now combined the 130 positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df_o
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$Position); tail(df0$Position)
|
||||
head(df1$Position); tail(df1$Position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df = merge(df0, df1
|
||||
, by = "Position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$Position == "49",]
|
||||
my_df[my_df$Position == "13",]
|
||||
|
||||
my_df$Position
|
||||
|
||||
# clear variables
|
||||
rm(aa_cols_ref
|
||||
, df0
|
||||
, df1
|
||||
, my_df_o
|
||||
, Position_cols
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, Position
|
||||
)
|
||||
|
|
@ -1,27 +0,0 @@
|
|||
#########################
|
||||
#3: Read complex pdb file
|
||||
##########################
|
||||
source("Header_TT.R")
|
||||
# This script only reads the pdb file of your complex
|
||||
|
||||
# read in pdb file complex1
|
||||
inDir = "~/git/Data/pyrazinamide/input/structure/"
|
||||
inFile = paste0(inDir, "complex1_no_water.pdb")
|
||||
complex1 = inFile
|
||||
|
||||
#inFile2 = paste0(inDir, "complex2_no_water.pdb")
|
||||
#complex2 = inFile2
|
||||
|
||||
# list of 8
|
||||
my_pdb = read.pdb(complex1
|
||||
, maxlines = -1
|
||||
, multi = FALSE
|
||||
, rm.insert = FALSE
|
||||
, rm.alt = TRUE
|
||||
, ATOM.only = FALSE
|
||||
, hex = FALSE
|
||||
, verbose = TRUE)
|
||||
|
||||
rm(inDir, inFile, complex1)
|
||||
#====== end of script
|
||||
|
|
@ -1,386 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("Header_TT.R")
|
||||
|
||||
#########################################################
|
||||
# TASK: replace B-factors in the pdb file with normalised values
|
||||
# use the complex file with no water as mCSM lig was
|
||||
# performed on this file. You can check it in the script: read_pdb file.
|
||||
#########################################################
|
||||
|
||||
###########################
|
||||
# 2: Read file: average stability values
|
||||
# or mcsm_normalised file, output of step 4 mcsm pipeline
|
||||
###########################
|
||||
|
||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
||||
inFile = paste0(inDir, "mean_PS_Lig_Bfactor.csv"); inFile
|
||||
|
||||
my_df <- read.csv(inFile
|
||||
# , row.names = 1
|
||||
# , stringsAsFactors = F
|
||||
, header = T)
|
||||
str(my_df)
|
||||
|
||||
#=========================================================
|
||||
# Processing P1: Replacing B factor with mean ratioDUET scores
|
||||
#=========================================================
|
||||
|
||||
#########################
|
||||
# Read complex pdb file
|
||||
# form the R script
|
||||
##########################
|
||||
|
||||
source("read_pdb.R") # list of 8
|
||||
|
||||
# extract atom list into a variable
|
||||
# since in the list this corresponds to data frame, variable will be a df
|
||||
d = my_pdb[[1]]
|
||||
|
||||
# make a copy: required for downstream sanity checks
|
||||
d2 = d
|
||||
|
||||
# sanity checks: B factor
|
||||
max(d$b); min(d$b)
|
||||
|
||||
#*******************************************
|
||||
# plot histograms for inspection
|
||||
# 1: original B-factors
|
||||
# 2: original DUET Scores
|
||||
# 3: replaced B-factors with DUET Scores
|
||||
#*********************************************
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
, mfrow = c(3,2))
|
||||
#par(mfrow = c(3,2))
|
||||
|
||||
#1: Original B-factor
|
||||
hist(d$b
|
||||
, xlab = ""
|
||||
, main = "B-factor")
|
||||
|
||||
plot(density(d$b)
|
||||
, xlab = ""
|
||||
, main = "B-factor")
|
||||
|
||||
# 2: DUET scores
|
||||
hist(my_df$average_DUETR
|
||||
, xlab = ""
|
||||
, main = "Norm_DUET")
|
||||
|
||||
plot(density(my_df$average_DUETR)
|
||||
, xlab = ""
|
||||
, main = "Norm_DUET")
|
||||
|
||||
# 3: After the following replacement
|
||||
#********************************
|
||||
|
||||
#=========
|
||||
# step 0_P1: DONT RUN once you have double checked the matched output
|
||||
#=========
|
||||
# sanity check: match and assign to a separate column to double check
|
||||
# colnames(my_df)
|
||||
# d$ratioDUET = my_df$averge_DUETR[match(d$resno, my_df$Position)]
|
||||
|
||||
#=========
|
||||
# step 1_P1
|
||||
#=========
|
||||
# Be brave and replace in place now (don't run sanity check)
|
||||
# this makes all the B-factor values in the non-matched positions as NA
|
||||
d$b = my_df$average_DUETR[match(d$resno, my_df$Position)]
|
||||
|
||||
#=========
|
||||
# step 2_P1
|
||||
#=========
|
||||
# count NA in Bfactor
|
||||
b_na = sum(is.na(d$b)) ; b_na
|
||||
|
||||
# count number of 0's in Bactor
|
||||
sum(d$b == 0)
|
||||
#table(d$b)
|
||||
|
||||
# replace all NA in b factor with 0
|
||||
d$b[is.na(d$b)] = 0
|
||||
|
||||
# sanity check: should be 0
|
||||
sum(is.na(d$b))
|
||||
|
||||
# sanity check: should be True
|
||||
if (sum(d$b == 0) == b_na){
|
||||
print ("Sanity check passed: NA's replaced with 0's successfully")
|
||||
} else {
|
||||
print("Error: NA replacement NOT successful, Debug code!")
|
||||
}
|
||||
|
||||
max(d$b); min(d$b)
|
||||
|
||||
# sanity checks: should be True
|
||||
if(max(d$b) == max(my_df$average_DUETR)){
|
||||
print("Sanity check passed: B-factors replaced correctly")
|
||||
} else {
|
||||
print ("Error: Debug code please")
|
||||
}
|
||||
|
||||
if (min(d$b) == min(my_df$average_DUETR)){
|
||||
print("Sanity check passed: B-factors replaced correctly")
|
||||
} else {
|
||||
print ("Error: Debug code please")
|
||||
}
|
||||
|
||||
#=========
|
||||
# step 3_P1
|
||||
#=========
|
||||
# sanity check: dim should be same before reassignment
|
||||
# should be TRUE
|
||||
dim(d) == dim(d2)
|
||||
|
||||
#=========
|
||||
# step 4_P1
|
||||
#=========
|
||||
# assign it back to the pdb file
|
||||
my_pdb[[1]] = d
|
||||
|
||||
max(d$b); min(d$b)
|
||||
|
||||
#=========
|
||||
# step 5_P1
|
||||
#=========
|
||||
# output dir
|
||||
getwd()
|
||||
outDir = "~/git/Data/pyrazinamide/input/structure/"
|
||||
|
||||
outFile = paste0(outDir, "complex1_BwithNormDUET.pdb"); outFile
|
||||
write.pdb(my_pdb, outFile)
|
||||
|
||||
#********************************
|
||||
# Add the 3rd histogram and density plots for comparisons
|
||||
#********************************
|
||||
# Plots continued...
|
||||
# 3: hist and density of replaced B-factors with DUET Scores
|
||||
hist(d$b
|
||||
, xlab = ""
|
||||
, main = "repalced-B")
|
||||
|
||||
plot(density(d$b)
|
||||
, xlab = ""
|
||||
, main = "replaced-B")
|
||||
|
||||
# graph titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = "DUET_stability"
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
#********************************
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# NOTE: This replaced B-factor distribution has the same
|
||||
# x-axis as the PredAff normalised values, but the distribution
|
||||
# is affected since 0 is overinflated. This is because all the positions
|
||||
# where there are no SNPs have been assigned 0.
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#######################################################################
|
||||
#====================== end of section 1 ==============================
|
||||
#######################################################################
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#=========================================================
|
||||
# Processing P2: Replacing B values with PredAff Scores
|
||||
#=========================================================
|
||||
# clear workspace
|
||||
rm(list = ls())
|
||||
|
||||
###########################
|
||||
# 2: Read file: average stability values
|
||||
# or mcsm_normalised file, output of step 4 mcsm pipeline
|
||||
###########################
|
||||
|
||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
||||
inFile = paste0(inDir, "mean_PS_Lig_Bfactor.csv"); inFile
|
||||
|
||||
my_df <- read.csv(inFile
|
||||
# , row.names = 1
|
||||
# , stringsAsFactors = F
|
||||
, header = T)
|
||||
str(my_df)
|
||||
#rm(inDir, inFile)
|
||||
|
||||
#########################
|
||||
# 3: Read complex pdb file
|
||||
# form the R script
|
||||
##########################
|
||||
|
||||
source("read_pdb.R") # list of 8
|
||||
|
||||
# extract atom list into a variable
|
||||
# since in the list this corresponds to data frame, variable will be a df
|
||||
d = my_pdb[[1]]
|
||||
|
||||
# make a copy: required for downstream sanity checks
|
||||
d2 = d
|
||||
|
||||
# sanity checks: B factor
|
||||
max(d$b); min(d$b)
|
||||
|
||||
#*******************************************
|
||||
# plot histograms for inspection
|
||||
# 1: original B-factors
|
||||
# 2: original Pred Aff Scores
|
||||
# 3: replaced B-factors with PredAff Scores
|
||||
#********************************************
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
, mfrow = c(3,2))
|
||||
#par(mfrow = c(3,2))
|
||||
|
||||
# 1: Original B-factor
|
||||
hist(d$b
|
||||
, xlab = ""
|
||||
, main = "B-factor")
|
||||
|
||||
plot(density(d$b)
|
||||
, xlab = ""
|
||||
, main = "B-factor")
|
||||
|
||||
# 2: Pred Aff scores
|
||||
hist(my_df$average_PredAffR
|
||||
, xlab = ""
|
||||
, main = "Norm_lig_average")
|
||||
|
||||
plot(density(my_df$average_PredAffR)
|
||||
, xlab = ""
|
||||
, main = "Norm_lig_average")
|
||||
|
||||
# 3: After the following replacement
|
||||
#********************************
|
||||
|
||||
#=================================================
|
||||
# Processing P2: Replacing B values with ratioPredAff scores
|
||||
#=================================================
|
||||
# use match to perform this replacement linking with "position no"
|
||||
# in the pdb file, this corresponds to column "resno"
|
||||
# in my_df, this corresponds to column "Position"
|
||||
|
||||
#=========
|
||||
# step 0_P2: DONT RUN once you have double checked the matched output
|
||||
#=========
|
||||
# sanity check: match and assign to a separate column to double check
|
||||
# colnames(my_df)
|
||||
# d$ratioPredAff = my_df$average_PredAffR[match(d$resno, my_df$Position)] #1384, 17
|
||||
|
||||
#=========
|
||||
# step 1_P2: BE BRAVE and replace in place now (don't run step 0)
|
||||
#=========
|
||||
# this makes all the B-factor values in the non-matched positions as NA
|
||||
d$b = my_df$average_PredAffR[match(d$resno, my_df$Position)]
|
||||
|
||||
#=========
|
||||
# step 2_P2
|
||||
#=========
|
||||
# count NA in Bfactor
|
||||
b_na = sum(is.na(d$b)) ; b_na
|
||||
|
||||
# count number of 0's in Bactor
|
||||
sum(d$b == 0)
|
||||
#table(d$b)
|
||||
|
||||
# replace all NA in b factor with 0
|
||||
d$b[is.na(d$b)] = 0
|
||||
|
||||
# sanity check: should be 0
|
||||
sum(is.na(d$b))
|
||||
|
||||
if (sum(d$b == 0) == b_na){
|
||||
print ("Sanity check passed: NA's replaced with 0's successfully")
|
||||
} else {
|
||||
print("Error: NA replacement NOT successful, Debug code!")
|
||||
}
|
||||
|
||||
max(d$b); min(d$b)
|
||||
|
||||
# sanity checks: should be True
|
||||
if (max(d$b) == max(my_df$average_PredAffR)){
|
||||
print("Sanity check passed: B-factors replaced correctly")
|
||||
} else {
|
||||
print ("Error: Debug code please")
|
||||
}
|
||||
|
||||
if (min(d$b) == min(my_df$average_PredAffR)){
|
||||
print("Sanity check passed: B-factors replaced correctly")
|
||||
} else {
|
||||
print ("Error: Debug code please")
|
||||
}
|
||||
|
||||
#=========
|
||||
# step 3_P2
|
||||
#=========
|
||||
# sanity check: dim should be same before reassignment
|
||||
# should be TRUE
|
||||
dim(d) == dim(d2)
|
||||
|
||||
#=========
|
||||
# step 4_P2
|
||||
#=========
|
||||
# assign it back to the pdb file
|
||||
my_pdb[[1]] = d
|
||||
|
||||
max(d$b); min(d$b)
|
||||
|
||||
#=========
|
||||
# step 5_P2
|
||||
#=========
|
||||
|
||||
# output dir
|
||||
outDir = "~/git/Data/pyrazinamide/input/structure/"
|
||||
outFile = paste0(outDir, "complex1_BwithNormLIG.pdb"); outFile
|
||||
write.pdb(my_pdb, outFile)
|
||||
|
||||
#********************************
|
||||
# Add the 3rd histogram and density plots for comparisons
|
||||
#********************************
|
||||
# Plots continued...
|
||||
# 3: hist and density of replaced B-factors with PredAff Scores
|
||||
hist(d$b
|
||||
, xlab = ""
|
||||
, main = "repalced-B")
|
||||
|
||||
plot(density(d$b)
|
||||
, xlab = ""
|
||||
, main = "replaced-B")
|
||||
|
||||
# graph titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = "Lig_stability"
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
#********************************
|
||||
|
||||
###########
|
||||
# end of output files with Bfactors
|
||||
##########
|
|
@ -1,257 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# 1: Installing and loading required packages #
|
||||
#########################################################
|
||||
|
||||
source("Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
##########################################################
|
||||
# Checking: Entire data frame and for PS #
|
||||
##########################################################
|
||||
|
||||
###########################
|
||||
#2) Read file: combined one from the script
|
||||
###########################
|
||||
source("combining_two_df.R")
|
||||
|
||||
# df with NA:
|
||||
# merged_df2
|
||||
# merged_df3:
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp:
|
||||
# merged_df3_comp:
|
||||
|
||||
######################
|
||||
# You need to check it
|
||||
# with the merged_df3
|
||||
########################
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#clear variables
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# should be true
|
||||
identical(my_df$Position, my_df$position)
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
|
||||
|
||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
||||
inFile = paste0(inDir, "mcsm_complex1_normalised.csv"); inFile
|
||||
|
||||
mcsm_data <- read.csv(inFile
|
||||
, row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
str(mcsm_data)
|
||||
my_colnames = colnames(mcsm_data)
|
||||
|
||||
#====================================
|
||||
# subset my_df to include only the columns in mcsm data
|
||||
my_df2 = my_df[my_colnames]
|
||||
#====================================
|
||||
# compare the two
|
||||
head(mcsm_data$Mutationinformation)
|
||||
head(mcsm_data$Position)
|
||||
|
||||
head(my_df2$Mutationinformation)
|
||||
head(my_df2$Position)
|
||||
|
||||
# sort mcsm data by Mutationinformation
|
||||
mcsm_data_s = mcsm_data[order(mcsm_data$Mutationinformation),]
|
||||
head(mcsm_data_s$Mutationinformation)
|
||||
head(mcsm_data_s$Position)
|
||||
|
||||
# now compare: should be True, but is false....
|
||||
# possibly due to rownames!?!
|
||||
identical(mcsm_data_s, my_df2)
|
||||
|
||||
# from library dplyr
|
||||
setdiff(mcsm_data_s, my_df2)
|
||||
|
||||
#from lib compare
|
||||
compare(mcsm_data_s, my_df2) # seems rownames are the problem
|
||||
|
||||
# FIXME: automate this
|
||||
# write files: checked using meld and files are indeed identical
|
||||
#write.csv(mcsm_data_s, "mcsm_data_s.csv", row.names = F)
|
||||
#write.csv(my_df2, "my_df2.csv", row.names = F)
|
||||
|
||||
|
||||
#====================================================== end of section 1
|
||||
|
||||
|
||||
|
||||
##########################################################
|
||||
# Checking: LIG(Filtered dataframe) #
|
||||
##########################################################
|
||||
|
||||
# clear workspace
|
||||
rm(list = ls())
|
||||
|
||||
###########################
|
||||
#3) Read file: combined_lig from the script
|
||||
###########################
|
||||
source("combining_two_df_lig.R")
|
||||
|
||||
# df with NA:
|
||||
# merged_df2 :
|
||||
# merged_df3:
|
||||
|
||||
# df without NA:
|
||||
# merged_df2_comp:
|
||||
# merged_df3_comp:
|
||||
|
||||
######################
|
||||
# You need to check it
|
||||
# with the merged_df3
|
||||
########################
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#clear variables
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# should be true
|
||||
identical(my_df$Position, my_df$position)
|
||||
|
||||
#################################
|
||||
# Read file: normalised file
|
||||
# output of step 4 mcsm_pipeline
|
||||
#################################
|
||||
|
||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
||||
inFile = paste0(inDir, "mcsm_complex1_normalised.csv"); inFile
|
||||
|
||||
mcsm_data <- read.csv(inFile
|
||||
, row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
str(mcsm_data)
|
||||
|
||||
###########################
|
||||
# 4a: Filter/subset data: ONLY for LIGand analysis
|
||||
# Lig plots < 10Ang
|
||||
# Filter the lig plots for Dis_to_lig < 10Ang
|
||||
###########################
|
||||
# sanity checks
|
||||
upos = unique(mcsm_data$Position)
|
||||
|
||||
# check range of distances
|
||||
max(mcsm_data$Dis_lig_Ang)
|
||||
min(mcsm_data$Dis_lig_Ang)
|
||||
|
||||
# Lig filtered: subset data to have only values less than 10 Ang
|
||||
mcsm_data2 = subset(mcsm_data, mcsm_data$Dis_lig_Ang < 10)
|
||||
|
||||
rm(mcsm_data) #to avoid confusion
|
||||
|
||||
table(mcsm_data2$Dis_lig_Ang<10)
|
||||
table(mcsm_data2$Dis_lig_Ang>10)
|
||||
|
||||
max(mcsm_data2$Dis_lig_Ang)
|
||||
min(mcsm_data2$Dis_lig_Ang)
|
||||
|
||||
upos_f = unique(mcsm_data2$Position); upos_f
|
||||
|
||||
# colnames of df that you will need to subset the bigger df from
|
||||
my_colnames = colnames(mcsm_data2)
|
||||
#====================================
|
||||
# subset bigger df i.e my_df to include only the columns in mcsm data2
|
||||
my_df2 = my_df[my_colnames]
|
||||
|
||||
rm(my_df) #to avoid confusion
|
||||
#====================================
|
||||
# compare the two
|
||||
head(mcsm_data2$Mutationinformation)
|
||||
head(mcsm_data2$Position)
|
||||
|
||||
head(my_df2$Mutationinformation)
|
||||
head(my_df2$Position)
|
||||
|
||||
# sort mcsm data by Mutationinformation
|
||||
mcsm_data2_s = mcsm_data2[order(mcsm_data2$Mutationinformation),]
|
||||
head(mcsm_data2_s$Mutationinformation)
|
||||
head(mcsm_data2_s$Position)
|
||||
|
||||
# now compare: should be True, but is false....
|
||||
# possibly due to rownames!?!
|
||||
identical(mcsm_data2_s, my_df2)
|
||||
|
||||
# from library dplyr
|
||||
setdiff(mcsm_data2_s, my_df2)
|
||||
|
||||
# from library compare
|
||||
compare(mcsm_data2_s, my_df2) # seems rownames are the problem
|
||||
|
||||
#FIXME: automate this
|
||||
# write files: checked using meld and files are indeed identical
|
||||
#write.csv(mcsm_data2_s, "mcsm_data2_s.csv", row.names = F)
|
||||
#write.csv(my_df2, "my_df2.csv", row.names = F)
|
||||
|
||||
|
||||
##########################################################
|
||||
# extract and write output file for SNP posn: all #
|
||||
##########################################################
|
||||
|
||||
head(merged_df3$Position)
|
||||
|
||||
foo = merged_df3[order(merged_df3$Position),]
|
||||
head(foo$Position)
|
||||
|
||||
snp_pos_unique = unique(foo$Position); snp_pos_unique
|
||||
|
||||
# sanity check:
|
||||
table(snp_pos_unique == combined_df$Position)
|
||||
|
||||
#=====================
|
||||
# write_output files
|
||||
#=====================
|
||||
outDir = "~/Data/pyrazinamide/input/processed/"
|
||||
|
||||
|
||||
outFile1 = paste0(outDir, "snp_pos_unique.txt"); outFile1
|
||||
print(paste0("Output file name and path will be:","", outFile1))
|
||||
|
||||
write.table(snp_pos_unique
|
||||
, outFile1
|
||||
, row.names = F
|
||||
, col.names = F)
|
||||
|
||||
##############################################################
|
||||
# extract and write output file for SNP posn: complete only #
|
||||
##############################################################
|
||||
head(merged_df3_comp$Position)
|
||||
|
||||
foo = merged_df3_comp[order(merged_df3_comp$Position),]
|
||||
head(foo$Position)
|
||||
|
||||
snp_pos_unique = unique(foo$Position); snp_pos_unique
|
||||
|
||||
# outDir = "~/Data/pyrazinamide/input/processed/" # already set
|
||||
|
||||
outFile2 = paste0(outDir, "snp_pos_unique_comp.txt")
|
||||
print(paste0("Output file name and path will be:", outFile2))
|
||||
|
||||
write.table(snp_pos_unique
|
||||
, outFile2
|
||||
, row.names = F
|
||||
, col.names = F)
|
||||
#============================== end of script
|
||||
|
||||
|
|
@ -48,9 +48,10 @@ gene = 'pncA'
|
|||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#=======
|
||||
# input
|
||||
# input from outdir
|
||||
#=======
|
||||
indir = datadir + '/' + drug + '/' + 'output'
|
||||
#indir = datadir + '/' + drug + '/' + 'output'
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
#in_filename = 'pnca.dssp'
|
||||
in_filename = gene.lower() +'.dssp'
|
||||
infile = indir + '/' + in_filename
|
||||
|
|
|
@ -4,9 +4,6 @@
|
|||
## Structure:
|
||||
#
|
||||
# $DATA_DIR/$DRUG/input
|
||||
# |- original
|
||||
# |- processed
|
||||
# |- structure
|
||||
#
|
||||
# $DATA_DIR/$DRUG/output
|
||||
# |- plots
|
||||
|
@ -15,18 +12,17 @@
|
|||
DATA_DIR=~/git/Data
|
||||
|
||||
if [[ $1 == '' ]]; then
|
||||
echo "Error"
|
||||
echo "usage: mk-drug-dirs.sh <drug name>";
|
||||
exit;
|
||||
else
|
||||
DRUG=$1
|
||||
echo Creating structure for: $DRUG
|
||||
echo Creating directory structure for: $DRUG
|
||||
|
||||
if [ -d $DATA_DIR ]
|
||||
then
|
||||
echo Doing creation in $DATA_DIR
|
||||
mkdir -p $DATA_DIR/$DRUG/input/original
|
||||
mkdir -p $DATA_DIR/$DRUG/input/processed
|
||||
mkdir -p $DATA_DIR/$DRUG/input/structure
|
||||
mkdir -p $DATA_DIR/$DRUG/input
|
||||
mkdir -p $DATA_DIR/$DRUG/output/plots
|
||||
mkdir -p $DATA_DIR/$DRUG/output/structure
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -23,34 +23,31 @@ homedir = os.path.expanduser('~')
|
|||
|
||||
# set working dir
|
||||
#os.getcwd()
|
||||
#os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||
#os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||
#os.getcwd()
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = gene + '_p.'
|
||||
#drug = 'pyrazinamide'
|
||||
#gene = 'pncA'
|
||||
#gene_match = gene + '_p.'
|
||||
|
||||
#==========
|
||||
# data dir
|
||||
#==========
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
indir = datadir + '/' + drug + 'input'
|
||||
in_filename = 'aa_codes.csv'
|
||||
infile = indir + '/' + in_filename
|
||||
infile = datadir + '/' + in_filename
|
||||
print('Input filename:', in_filename
|
||||
, '\nInput path:', indir
|
||||
, '\nInput path:', datadir
|
||||
, '\n============================================================')
|
||||
|
||||
#=======
|
||||
# output: No output
|
||||
#=======
|
||||
|
||||
#outdir = datadir + '/' + drug + '/' + 'output'
|
||||
#out_filename = ''
|
||||
#outfile = outdir + '/' + out_filename
|
||||
|
@ -76,6 +73,7 @@ my_aa = my_aa.set_index('three_letter_code_lower') #20, 5
|
|||
# using 'index' creates a dict of dicts
|
||||
# using 'records' creates a list of dicts
|
||||
my_aa_dict = my_aa.to_dict('index') #20, with 5 subkeys
|
||||
print('Printing my_aa_dict:', my_aa_dict.keys())
|
||||
|
||||
#================================================
|
||||
# dict of aa with their corresponding properties
|
Loading…
Add table
Add a link
Reference in a new issue