330 lines
10 KiB
R
330 lines
10 KiB
R
#########################################################
|
|
# TASK: To combine mcsm and meta data with af and or
|
|
# by filtering for distance to ligand (<10Ang).
|
|
# This script doesn't output anything.
|
|
# This script is sourced from other .R scripts for plotting ligand plots
|
|
|
|
# Input csv files:
|
|
# 1) mcsm normalised and struct params
|
|
# 2) gene associated meta_data_with_AFandOR
|
|
#########################################################
|
|
getwd()
|
|
setwd('~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/')
|
|
getwd()
|
|
|
|
##########################################################
|
|
# Installing and loading required packages
|
|
##########################################################
|
|
|
|
source('Header_TT.R')
|
|
#require(data.table)
|
|
#require(arsenal)
|
|
#require(compare)
|
|
#library(tidyverse)
|
|
|
|
#################################
|
|
# Read file: normalised file
|
|
# output of step 4 mcsm_pipeline
|
|
#################################
|
|
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
# infile1: mCSM data
|
|
#indir = '~/git/Data/pyrazinamide/input/processed/'
|
|
indir = paste0('~/git/Data', '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
|
|
#in_filename = 'mcsm_complex1_normalised.csv'
|
|
in_filename = 'pnca_mcsm_struct_params.csv'
|
|
infile = paste0(indir, '/', in_filename)
|
|
cat(paste0('Reading infile1: mCSM output file', ' ', infile) )
|
|
|
|
# infile2: gene associated meta data combined with AF and OR
|
|
#indir: same as above
|
|
in_filename_comb = paste0(tolower(gene), '_meta_data_with_AFandOR.csv')
|
|
infile_comb = paste0(indir, '/', in_filename_comb)
|
|
cat(paste0('Reading infile2: gene associated combined metadata:', infile_comb))
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
# Uncomment if and when required to output
|
|
outdir = paste0('~/git/Data', '/', drug, '/', 'output') #same as indir
|
|
cat('Output dir: ', outdir)
|
|
#out_filename = paste0(tolower(gene), 'XXX')
|
|
#outfile = paste0(outdir, '/', out_filename)
|
|
#cat(paste0('Output file with full path:', outfile))
|
|
#%% end of variable assignment for input and output files
|
|
|
|
#################################
|
|
# Read file: normalised file
|
|
# output of step 4 mcsm_pipeline
|
|
#################################
|
|
cat('Reading mcsm_data:'
|
|
, '\nindir: ', indir
|
|
, '\ninfile_comb: ', in_filename)
|
|
|
|
mcsm_data = read.csv(infile
|
|
, row.names = 1
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
cat('Read mcsm_data file:'
|
|
, '\nNo.of rows: ', nrow(mcsm_data)
|
|
, '\nNo. of cols:', ncol(mcsm_data))
|
|
|
|
# clear variables
|
|
rm(in_filename, infile)
|
|
|
|
str(mcsm_data)
|
|
|
|
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
|
|
|
# spelling Correction 1: DUET
|
|
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
|
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
|
|
|
# checks: should be the same as above
|
|
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
|
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
|
|
|
|
# spelling Correction 2: Ligand
|
|
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
|
|
|
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
|
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
|
|
|
# checks: should be the same as above
|
|
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
|
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
|
|
|
|
# muts with opposing effects on protomer and ligand stability
|
|
# excluded from here as it is redundant.
|
|
# check 'combining_two_df.R' to refer if required.
|
|
|
|
########################### !!! only for mcsm_lig
|
|
# 4: Filter/subset data
|
|
# Lig plots < 10Ang
|
|
# Filter the lig plots for Dis_to_lig < 10Ang
|
|
###########################
|
|
|
|
# check range of distances
|
|
max(mcsm_data$Dis_lig_Ang)
|
|
min(mcsm_data$Dis_lig_Ang)
|
|
|
|
# count
|
|
table(mcsm_data$Dis_lig_Ang<10)
|
|
|
|
# subset data to have only values less than 10 Ang
|
|
mcsm_data2 = subset(mcsm_data, mcsm_data$Dis_lig_Ang < 10)
|
|
|
|
# sanity checks
|
|
max(mcsm_data2$Dis_lig_Ang)
|
|
min(mcsm_data2$Dis_lig_Ang)
|
|
|
|
# count no of unique positions
|
|
length(unique(mcsm_data2$Position))
|
|
|
|
# count no of unique mutations
|
|
length(unique(mcsm_data2$Mutationinformation))
|
|
|
|
# count Destabilisinga and stabilising
|
|
table(mcsm_data2$Lig_outcome) #{RESULT: no of mutations within 10Ang}
|
|
|
|
#############################
|
|
# Extra sanity check:
|
|
# for mcsm_lig ONLY
|
|
# Dis_lig_Ang should be <10
|
|
#############################
|
|
|
|
if (max(mcsm_data2$Dis_lig_Ang) < 10){
|
|
print ("Sanity check passed: lig data is <10Ang")
|
|
}else{
|
|
print ("Error: data should be filtered to be within 10Ang")
|
|
}
|
|
|
|
#!!!!!!!!!!!!!!!!!!!!!
|
|
# REASSIGNMENT: so as not to alter the script
|
|
mcsm_data = mcsm_data2
|
|
#!!!!!!!!!!!!!!!!!!!!!
|
|
# clear variables
|
|
rm(mcsm_data2)
|
|
|
|
# count na in each column
|
|
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
|
|
|
|
# sort by Mutationinformation
|
|
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
|
|
head(mcsm_data$Mutationinformation)
|
|
|
|
orig_col = ncol(mcsm_data)
|
|
# get freq count of positions and add to the df
|
|
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
|
|
|
cat('Added 1 col: position frequency to see which posn has how many muts'
|
|
, '\nNo. of cols now', ncol(mcsm_data)
|
|
, '\nNo. of cols before: ', orig_col)
|
|
|
|
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
|
|
|
###########################
|
|
# 2: Read file: meta data with AFandOR
|
|
###########################
|
|
cat('Reading combined meta data and AFandOR file:'
|
|
, '\nindir: ', indir
|
|
, '\ninfile_comb: ', in_filename_comb)
|
|
|
|
meta_with_afor <- read.csv(infile_comb
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
cat('Read mcsm_data file:'
|
|
, '\nNo.of rows: ', nrow(meta_with_afor)
|
|
, '\nNo. of cols:', ncol(meta_with_afor))
|
|
|
|
# clear variables
|
|
rm(in_filename_comb, infile_comb)
|
|
|
|
str(meta_with_afor)
|
|
|
|
# sort by Mutationinformation
|
|
head(meta_with_afor$Mutationinformation)
|
|
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
|
head(meta_with_afor$Mutationinformation)
|
|
|
|
###########################
|
|
# 3: merging two dfs: with NA
|
|
###########################
|
|
# link col name = 'Mutationinforamtion'
|
|
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
|
|
,'\nlinking col: Mutationinforamtion'
|
|
,'\nfilename: merged_df2')
|
|
|
|
head(mcsm_data$Mutationinformation)
|
|
head(meta_with_afor$Mutationinformation)
|
|
|
|
#########
|
|
# merge 3a: meta data with mcsm
|
|
#########
|
|
merged_df2 = merge(x = meta_with_afor
|
|
,y = mcsm_data
|
|
, by = 'Mutationinformation'
|
|
, all.y = T)
|
|
|
|
cat('Dim of merged_df2: '
|
|
, '\nNo. of rows: ', nrow(merged_df2)
|
|
, '\nNo. of cols: ', ncol(merged_df2))
|
|
head(merged_df2$Position)
|
|
|
|
if(nrow(meta_with_afor) == nrow(merged_df2)){
|
|
cat('nrow(merged_df2) = nrow (gene associated metadata)'
|
|
,'\nExpected no. of rows: ',nrow(meta_with_afor)
|
|
,'\nGot no. of rows: ', nrow(merged_df2))
|
|
} else{
|
|
cat('nrow(merged_df2)!= nrow(gene associated metadata)'
|
|
, '\nExpected no. of rows after merge: ', nrow(meta_with_afor)
|
|
, '\nGot no. of rows: ', nrow(merged_df2)
|
|
, '\nFinding discrepancy')
|
|
merged_muts_u = unique(merged_df2$Mutationinformation)
|
|
meta_muts_u = unique(meta_with_afor$Mutationinformation)
|
|
# find the index where it differs
|
|
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
|
|
}
|
|
|
|
# sort by Position
|
|
head(merged_df2$Position)
|
|
merged_df2 = merged_df2[order(merged_df2$Position),]
|
|
head(merged_df2$Position)
|
|
|
|
merged_df2v2 = merge(x = meta_with_afor
|
|
,y = mcsm_data
|
|
, by = 'Mutationinformation'
|
|
, all.x = T)
|
|
#!=!=!=!=!=!=!=!
|
|
# COMMENT: used all.y since position 186 is not part of the struc,
|
|
# hence doesn't have a mcsm value
|
|
# but 186 is associated with mutation
|
|
#!=!=!=!=!=!=!=!
|
|
|
|
# should be False
|
|
identical(merged_df2, merged_df2v2)
|
|
table(merged_df2$Position%in%merged_df2v2$Position)
|
|
|
|
rm(merged_df2v2)
|
|
|
|
#########
|
|
# merge 3b:remove duplicate mutation information
|
|
#########
|
|
cat('Merging dfs with NAs: small df (removing duplicate muts)'
|
|
,'\nCannot trust lineage info from this'
|
|
,'\nlinking col: Mutationinforamtion'
|
|
,'\nfilename: merged_df3')
|
|
|
|
#==#=#=#=#=#=#
|
|
# Cannot trust lineage, country from this df as the same mutation
|
|
# can have many different lineages
|
|
# but this should be good for the numerical corr plots
|
|
#=#=#=#=#=#=#=
|
|
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
|
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
|
|
|
|
# sanity checks
|
|
# nrows of merged_df3 should be the same as the nrows of mcsm_data
|
|
if(nrow(mcsm_data) == nrow(merged_df3)){
|
|
cat('PASS: No. of rows match with mcsm_data'
|
|
,'\nExpected no. of rows: ', nrow(mcsm_data)
|
|
,'\nGot no. of rows: ', nrow(merged_df3))
|
|
} else {
|
|
cat('FAIL: No. of rows mismatch'
|
|
, '\nNo. of rows mcsm_data: ', nrow(mcsm_data)
|
|
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
|
|
}
|
|
|
|
###########################
|
|
# 4: merging two dfs: without NA
|
|
###########################
|
|
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
|
,'\nlinking col: Mutationinforamtion'
|
|
,'\nfilename: merged_df2_comp')
|
|
|
|
#########
|
|
# merge 4a: same as merge 1 but excluding NA
|
|
#########
|
|
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
|
|
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
|
|
|
cat('Dim of merged_df2_comp: '
|
|
, '\nNo. of rows: ', nrow(merged_df2_comp)
|
|
, '\nNo. of cols: ', ncol(merged_df2_comp))
|
|
|
|
#########
|
|
# merge 4b: remove duplicate mutation information
|
|
#########
|
|
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
|
|
|
|
cat('Dim of merged_df3_comp: '
|
|
, '\nNo. of rows: ', nrow(merged_df3_comp)
|
|
, '\nNo. of cols: ', ncol(merged_df3_comp))
|
|
|
|
# alternate way of deriving merged_df3_comp
|
|
foo = merged_df3[!is.na(merged_df3$AF),]
|
|
# compare dfs: foo and merged_df3_com
|
|
all.equal(foo, merged_df3)
|
|
|
|
summary(comparedf(foo, merged_df3))
|
|
|
|
#=============== end of combining df
|
|
#*********************
|
|
# write_output files
|
|
# Not required as this is a subset of the combining_two_df.R
|
|
#*************************
|
|
# clear variables
|
|
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
|
rm(pos_count_check)
|
|
#============================= end of script
|
|
|