250 lines
6.8 KiB
R
250 lines
6.8 KiB
R
getwd()
|
|
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/")
|
|
getwd()
|
|
|
|
########################################################################
|
|
# Installing and loading required packages #
|
|
########################################################################
|
|
|
|
source("../Header_TT.R")
|
|
|
|
#source("barplot_colour_function.R")
|
|
|
|
library(ggseqlogo)
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
#############
|
|
# msa file: output of generate_mut_sequences.py
|
|
#############
|
|
homedir = '~'
|
|
indir = 'git/Data/pyrazinamide/output'
|
|
in_filename = "gene_msa.txt"
|
|
infile = paste0(homedir, '/', indir,'/', in_filename)
|
|
print(infile)
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
#############
|
|
# combined dfs
|
|
#############
|
|
source("../combining_two_df.R")
|
|
|
|
###########################
|
|
# Data for Logo plots
|
|
# you need big df i.e
|
|
# merged_df2
|
|
# or
|
|
# merged_df2_comp
|
|
# since these have unique SNPs
|
|
# I prefer to use the merged_df2
|
|
# because using the _comp dataset means
|
|
# we lose some muts and at this level, we should use
|
|
# as much info as available
|
|
###########################
|
|
|
|
# uncomment as necessary
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT
|
|
my_df = merged_df2
|
|
#my_df = merged_df2_comp
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
# delete variables not required
|
|
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
|
|
|
# quick checks
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
# doesn't work if you use the big df as it has duplicate snps
|
|
#rownames(my_df) = my_df$Mutationinformation
|
|
|
|
# sanity check: should be True
|
|
table(my_df$position == my_df$Position)
|
|
|
|
c1 = unique(my_df$Position) # 130
|
|
nrow(my_df) # 3092
|
|
|
|
#FIXME
|
|
#!!! RESOLVE !!!
|
|
# get freq count of positions and add to the df
|
|
setDT(my_df)[, occurrence_sample := .N, by = .(id)]
|
|
table(my_df$occurrence_sample)
|
|
|
|
|
|
my_df2 = my_df %>%
|
|
select(id, Mutationinformation, Wild_type, WildPos, position, Mutant_type, occurrence, occurrence_sample)
|
|
|
|
write.csv(my_df2, "my_df2.csv")
|
|
|
|
# extract freq_pos>1 since this will not add to much in the logo plot
|
|
# pos 5 has one mutation but coming from atleast 5 samples?
|
|
table(my_df$occurrence)
|
|
foo = my_df[my_df$occurrence ==1,]
|
|
|
|
# uncomment as necessary
|
|
my_data_snp = my_df #3092
|
|
|
|
#!!! RESOLVE
|
|
# FIXME
|
|
my_data_snp = my_df[my_df$occurrence!=1,] #3072, 36...3019
|
|
|
|
u = unique(my_data_snp$Position) #96
|
|
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|
|
|
|
#########################################################
|
|
# Task: To generate a logo plot or bar plot but coloured
|
|
# aa properties.
|
|
# step1: read mcsm file and OR file
|
|
# step2: plot wild type positions
|
|
# step3: plot mutants per position coloured by aa properties
|
|
# step4: make the size of the letters/bars prop to OR if you can!
|
|
#########################################################
|
|
##useful links
|
|
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
|
#https://omarwagih.github.io/ggseqlogo/
|
|
#https://kkdey.github.io/Logolas-pages/workflow.html
|
|
#A new sequence logo plot to highlight enrichment and depletion.
|
|
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
|
|
|
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
|
|
|
#==============
|
|
# matrix for mutant type
|
|
# frequency of mutant type by position
|
|
#==============
|
|
table(my_data_snp$Mutant_type, my_data_snp$Position)
|
|
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
|
|
class(tab_mt)
|
|
# unclass to convert to matrix
|
|
tab_mt = unclass(tab_mt)
|
|
tab_mt = as.matrix(tab_mt, rownames = T)
|
|
|
|
# should be TRUE
|
|
is.matrix(tab_mt)
|
|
|
|
rownames(tab_mt) #aa
|
|
colnames(tab_mt) #pos
|
|
|
|
#**********************
|
|
# Plot 1: mutant logo
|
|
#**********************
|
|
my_ymax = max(my_data_snp$occurrence); my_ymax
|
|
my_ylim = c(0,my_ymax) # very important
|
|
|
|
# axis sizes
|
|
# common: text and label
|
|
my_ats = 15
|
|
my_als = 20
|
|
|
|
# individual: text and label
|
|
my_xats = 15
|
|
my_yats = 20
|
|
my_xals = 15
|
|
my_yals = 20
|
|
|
|
# legend size: text and label
|
|
my_lts = 20
|
|
#my_lls = 20
|
|
|
|
# Color scheme based on chemistry of amino acids
|
|
chemistry = data.frame(
|
|
letter = c('G', 'S', 'T', 'Y', 'C', 'N', 'Q', 'K', 'R', 'H', 'D', 'E', 'P', 'A', 'W', 'F', 'L', 'I', 'M', 'V'),
|
|
group = c(rep('Polar', 5), rep('Neutral', 2), rep('Basic', 3), rep('Acidic', 2), rep('Hydrophobic', 8)),
|
|
col = c(rep('#109648', 5), rep('#5E239D', 2), rep('#255C99', 3), rep('#D62839', 2), rep('#221E22', 8)),
|
|
stringsAsFactors = F
|
|
)
|
|
|
|
# uncomment as necessary
|
|
my_type = "EDLogo"
|
|
#my_type = "Logo"
|
|
|
|
logomaker(tab_mt
|
|
, type = my_type
|
|
, return_heights = T
|
|
# , color_type = "per_row"
|
|
# , colors = chemistry$col
|
|
# , method = 'custom'
|
|
# , seq_type = 'aa'
|
|
# , col_scheme = "taylor"
|
|
# , col_scheme = "chemistry2"
|
|
) +
|
|
theme(legend.position = "bottom"
|
|
, legend.title = element_blank()
|
|
, legend.text = element_text(size = my_lts )
|
|
, axis.text.x = element_text(size = my_ats , angle = 90)
|
|
, axis.text.y = element_text(size = my_ats , angle = 90))
|
|
|
|
p0 = logomaker(tab_mt
|
|
, type = my_type
|
|
, return_heights = T
|
|
, color_type = "per_row"
|
|
, colors = chemistry$col
|
|
# , seq_type = 'aa'
|
|
# , col_scheme = "taylor"
|
|
# , col_scheme = "chemistry2"
|
|
) +
|
|
#ylab('my custom height') +
|
|
theme(axis.text.x = element_blank()) +
|
|
# theme_logo()+
|
|
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
|
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
|
, labels = colnames(tab_mt))+
|
|
scale_y_continuous( breaks = 1:my_ymax
|
|
, limits = my_ylim)
|
|
|
|
p0
|
|
|
|
# further customisation
|
|
p1 = p0 + theme(legend.position = "bottom"
|
|
, legend.title = element_blank()
|
|
, legend.text = element_text(size = my_lts)
|
|
, axis.text.x = element_text(size = my_ats , angle = 90)
|
|
, axis.text.y = element_text(size = my_ats , angle = 90))
|
|
p1
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
#############
|
|
# msa file: output of generate_mut_sequences.py
|
|
#############
|
|
homedir = '~'
|
|
indir = 'git/Data/pyrazinamide/output'
|
|
in_filename = "gene_msa.txt"
|
|
infile = paste0(homedir, '/', indir,'/', in_filename)
|
|
print(infile)
|
|
|
|
##############
|
|
# ggseqlogo: custom matrix of my data
|
|
##############
|
|
snps = read.csv(infile
|
|
, stringsAsFactors = F
|
|
, header = F) #3072,
|
|
|
|
class(snps); str(snps) # df and chr
|
|
|
|
# turn to a character vector
|
|
snps2 = as.character(snps[1:nrow(snps),])
|
|
|
|
class(snps2); str(snps2) #character, chr
|
|
|
|
# plot
|
|
logomaker(snps2, type = my_type
|
|
, color_type = "per_row") +
|
|
theme(axis.text.x = element_blank()) +
|
|
theme_logo()+
|
|
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
|
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
|
, labels = colnames(tab_mt))+
|
|
scale_y_continuous( breaks = 0:5
|
|
, limits = my_ylim)
|
|
|
|
|