LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/lineage_basic_barplot.R
2020-01-08 16:15:33 +00:00

227 lines
5.3 KiB
R

getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
########################################################################
# Installing and loading required packages #
########################################################################
source("../Header_TT.R")
#source("barplot_colour_function.R")
require(data.table)
########################################################################
# Read file: call script for combining df #
########################################################################
source("../combining_two_df.R")
#---------------------- PAY ATTENTION
# the above changes the working dir
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
#---------------------- PAY ATTENTION
#==========================
# This will return:
# df with NA:
# merged_df2
# merged_df3
# df without NA:
# merged_df2_comp
# merged_df3_comp
#==========================
###########################
# Data for plots
# you need merged_df2, comprehensive one
# since this has one-many relationship
# i.e the same SNP can belong to multiple lineages
###########################
# uncomment as necessary
#<<<<<<<<<<<<<<<<<<<<<<<<<
# REASSIGNMENT
my_df = merged_df2
#my_df = merged_df2_comp
#<<<<<<<<<<<<<<<<<<<<<<<<<
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
#==========================
# Plot: Lineage barplot
# x = lineage y = No. of samples
# col = Lineage
# fill = lineage
#============================
table(my_df$lineage)
# lineage1 lineage2 lineage3 lineage4 lineage5 lineage6 lineageBOV
#3 104 1293 264 1311 6 6 105
#===========================
# Plot: Lineage Barplots
#===========================
#===================
# Data for plots
#===================
#<<<<<<<<<<<<<<<<<<<<<<<<<
# REASSIGNMENT
df <- my_df
#<<<<<<<<<<<<<<<<<<<<<<<<<
rm(my_df)
# get freq count of positions so you can subset freq<1
#setDT(df)[, lineage_count := .N, by = .(lineage)]
#******************
# generate plot: barplot of mutation by lineage
#******************
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
df_lin = subset(df, subset = lineage %in% sel_lineages )
#FIXME; add sanity check for numbers.
# Done this manually
############################################################
#########
# Data for barplot: Lineage barplot
# to show total samples and number of unique mutations
# within each linege
##########
# Create df with lineage inform & no. of unique mutations
# per lineage and total samples within lineage
# this is essentially barplot with two y axis
bar = bar = as.data.frame(sel_lineages) #4, 1
total_snps_u = NULL
total_samples = NULL
for (i in sel_lineages){
#print(i)
curr_total = length(unique(df$id)[df$lineage==i])
total_samples = c(total_samples, curr_total)
print(total_samples)
foo = df[df$lineage==i,]
print(paste0(i, "======="))
print(length(unique(foo$Mutationinformation)))
curr_count = length(unique(foo$Mutationinformation))
total_snps_u = c(total_snps_u, curr_count)
}
print(total_snps_u)
bar$num_snps_u = total_snps_u
bar$total_samples = total_samples
bar
#*****************
# generate plot: lineage barplot with two y-axis
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
#*****************
bar$num_snps_u = y1
bar$total_samples = y2
sel_lineages = x
to_plot = data.frame(x = x
, y1 = y1
, y2 = y2)
to_plot
melted = melt(to_plot, id = "x")
melted
# set output dir for plots
getwd()
setwd("~/git/Data/pyrazinamide/output/plots")
getwd()
svg('lineage_basic_barplot.svg')
my_ats = 20 # axis text size
my_als = 22 # axis label size
g = ggplot(melted
, aes(x = x
, y = value
, fill = variable)
)
printFile = g + geom_bar(
#g + geom_bar(
stat = "identity"
, position = position_stack(reverse = TRUE)
, alpha=.75
, colour='grey75'
) + theme(
axis.text.x = element_text(
size = my_ats
# , angle= 30
)
, axis.text.y = element_text(size = my_ats
#, angle = 30
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(
size = my_als
, colour = 'black'
)
, axis.title.y = element_text(
size = my_als
, colour = 'black'
)
, legend.position = "top"
, legend.text = element_text(size = my_als)
#) + geom_text(
) + geom_label(
aes(label = value)
, size = 5
, hjust = 0.5
, vjust = 0.5
, colour = 'black'
, show.legend = FALSE
#, check_overlap = TRUE
, position = position_stack(reverse = T)
#, position = ('
) + labs(
title = ''
, x = ''
, y = "Number"
, fill = 'Variable'
, colour = 'black'
) + scale_fill_manual(
values = c('grey50', 'gray75')
, name=''
, labels=c('Mutations', 'Total Samples')
) + scale_x_discrete(
breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
)
print(printFile)
dev.off()