copy of ML dir to an FS-only version
This commit is contained in:
parent
52cc16f3fa
commit
80e6b3af96
23 changed files with 3115 additions and 243 deletions
36
UQ_FS_eg.py
36
UQ_FS_eg.py
|
@ -49,8 +49,7 @@ clf2.best_estimator_.named_steps['selector'].n_features_in_
|
|||
clf2.best_estimator_ #n of best features
|
||||
clf2.best_params_
|
||||
clf2.best_estimator_.get_params
|
||||
clf2.get_feature_names()
|
||||
|
||||
clf2.get_feature_names(
|
||||
|
||||
|
||||
clf3 = clf2.best_estimator_ #
|
||||
|
@ -62,4 +61,37 @@ clf3._final_estimator.solver
|
|||
fs_bmod = clf2.best_estimator_
|
||||
print('\nbest model with feature selection:', fs_bmod)
|
||||
|
||||
#########################################################
|
||||
# my data
|
||||
|
||||
pipe = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
('selector', RFECV(LogisticRegression(**rs), cv = skf_cv, scoring = 'matthews_corrcoef'))
|
||||
, ('classifier', LogisticRegression(**rs))])
|
||||
|
||||
search_space = [{'selector__min_features_to_select': [1,2]},
|
||||
{'classifier': [LogisticRegression()],
|
||||
#'classifier__C': np.logspace(0, 4, 10),
|
||||
'classifier__C': [2, 2.8],
|
||||
'classifier__max_iter': [100],
|
||||
'classifier__penalty': ['l1', 'l2'],
|
||||
'classifier__solver': ['saga']
|
||||
}] #,
|
||||
#{'classifier': [RandomForestClassifier(n_estimators=100)],
|
||||
# 'classifier__max_depth': [5, 10, None]},
|
||||
#{'classifier': [KNeighborsClassifier()],
|
||||
# 'classifier__n_neighbors': [3, 7, 11],
|
||||
# 'classifier__weights': ['uniform', 'distance']
|
||||
#}]
|
||||
|
||||
clf = GridSearchCV(pipe, search_space, cv=skf_cv, scoring = mcc_score_fn, refit = 'mcc', verbose=0)
|
||||
|
||||
clf.fit(X, y)
|
||||
clf.best_params_
|
||||
clf.best_score_
|
||||
|
||||
tp = clf.predict(X_bts)
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, tp),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, tp),2))
|
||||
|
||||
|
||||
|
|
130
UQ_LR_FS_p1.py
130
UQ_LR_FS_p1.py
|
@ -12,60 +12,20 @@ Created on Tue Mar 15 11:09:50 2022
|
|||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Import libs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from xgboost import XGBClassifier
|
||||
#####################
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
from sklearn.feature_selection import SequentialFeatureSelector
|
||||
# Attempting feature selection for LR WITHOUT ClfSwitcher Class
|
||||
|
||||
#%% Import libraries, data, and scoring func: UQ_pnca_ML.py
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
#%%
|
||||
|
||||
y.to_frame().value_counts().plot(kind = 'bar')
|
||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
#%% Logistic Regression + hyperparam + FS: Pipeline takes GridSearchCV (not the other way round!)
|
||||
model_lr = LogisticRegression(**rs)
|
||||
model_rfecv = RFECV(estimator = model_lr
|
||||
, cv = rskf_cv
|
||||
, cv = skf_cv
|
||||
#, cv = 10
|
||||
, scoring = 'matthews_corrcoef'
|
||||
)
|
||||
|
||||
# model_rfecv = SequentialFeatureSelector(estimator = model_lr
|
||||
# model_sfs = SequentialFeatureSelector(estimator = model_lr
|
||||
# , n_features_to_select = 'auto'
|
||||
# , tol = None
|
||||
# # , cv = 10
|
||||
|
@ -74,23 +34,9 @@ model_rfecv = RFECV(estimator = model_lr
|
|||
# , direction ='forward'
|
||||
# , **njobs)
|
||||
|
||||
# param_grid = [
|
||||
# { 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l1', 'l2'],
|
||||
# 'max_iter': [100],
|
||||
# 'solver': ['saga']
|
||||
# }#,
|
||||
# # { 'C': [1],
|
||||
# # 'penalty': ['l1'],
|
||||
# # 'max_iter': [100],
|
||||
# # 'solver': ['saga']
|
||||
# # }
|
||||
# ]
|
||||
|
||||
param_grid2 = [
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
|
@ -98,7 +44,6 @@ param_grid2 = [
|
|||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l2', 'none'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
|
@ -106,13 +51,24 @@ param_grid2 = [
|
|||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l1', 'l2'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['liblinear']
|
||||
}
|
||||
|
||||
|
||||
# lesser params for testing
|
||||
# { 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l1', 'l2'],
|
||||
# 'max_iter': [100],
|
||||
# 'solver': ['saga']
|
||||
# },
|
||||
# { 'C': [1],
|
||||
# 'penalty': ['l1'],
|
||||
# 'max_iter': [100],
|
||||
# 'solver': ['saga']
|
||||
# }
|
||||
|
||||
]
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
|
@ -127,24 +83,21 @@ gscv_lr = GridSearchCV(model_lr
|
|||
|
||||
#------------------------------------------------------------------------------
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
pipeline2 = Pipeline([('pre', MinMaxScaler())
|
||||
#, ('feature_selection', sfs_selector)
|
||||
, ('feature_selection', model_rfecv )
|
||||
, ('clf', gscv_lr)])
|
||||
|
||||
# Fit
|
||||
lr_fs = pipeline.fit(X,y)
|
||||
pipeline2.fit(X,y)
|
||||
pipeline2.predict(X_bts)
|
||||
|
||||
# Assigning fit an then running predict: sanity check
|
||||
#lr_fs = pipeline.fit(X,y)
|
||||
#lr_fs.predict(X_bts)
|
||||
|
||||
pipeline.predict(X_bts)
|
||||
lr_fs.predict(X_bts)
|
||||
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
#y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
###############################################################################
|
||||
#####################
|
||||
|
@ -160,13 +113,12 @@ print(matthews_corrcoef(y_bts, test_predict))
|
|||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
#test_predict = gscv_lr_fit.predict(X_bts)
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
test_predict_fs = sfs_selector.predict(X_bts)
|
||||
test_predict = pipeline2.predict(X_bts)
|
||||
|
||||
print(test_predict)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
|
@ -237,7 +189,7 @@ from sklearn.feature_selection import SequentialFeatureSelector
|
|||
|
||||
# RFE: ~ model coef or feature_importance
|
||||
rfe_selector = RFECV(estimator = LogisticRegression(**rs
|
||||
, penalty='l1'
|
||||
, penalty='l2'
|
||||
, solver='saga'
|
||||
, max_iter = 100
|
||||
, C= 1.0)
|
||||
|
@ -249,6 +201,30 @@ rfe_fs = X.columns[rfe_selector.get_support()]
|
|||
print('\nFeatures selected from Recursive Feature Elimination:', len(rfe_fs)
|
||||
, '\nThese are:', rfe_fs)
|
||||
|
||||
# blind test
|
||||
TEST_PREDICT = rfe_selector.predict(X_bts)
|
||||
TEST_PREDICT
|
||||
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, TEST_PREDICT),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, TEST_PREDICT),2))
|
||||
|
||||
# add pipeline with preprocessing: changes numbers
|
||||
pipe = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
#, ('fs', model_rfecv)
|
||||
, ('fs', rfe_selector)
|
||||
, ('clf', LogisticRegression(**rs))])
|
||||
|
||||
pipe.fit(X,y)
|
||||
|
||||
tp = pipe.predict(X_bts)
|
||||
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, tp),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, tp),2))
|
||||
|
||||
##################################
|
||||
|
||||
|
||||
# SFM: ~ model coef or feature_importance
|
||||
sfm_selector = SelectFromModel(estimator = LogisticRegression(**rs
|
||||
, penalty='l1'
|
||||
|
|
165
UQ_LR_FS_p2.py
165
UQ_LR_FS_p2.py
|
@ -12,6 +12,8 @@ Created on Tue Mar 15 11:09:50 2022
|
|||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
# similar to _p1 but with Clf_Switcher
|
||||
#%% Import libraries, data, and scoring func: UQ_pnca_ML.py
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
@ -21,25 +23,17 @@ class ClfSwitcher(BaseEstimator):
|
|||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
#feature = RFECV(SGDClassifier())
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
#self.feature = feature
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
#self.feature.fit(X, y)
|
||||
return self
|
||||
|
||||
# def transform(self, X, y=None):
|
||||
# #self.estimator.transform(X, y)
|
||||
# self.feature.transform(X)
|
||||
# return self
|
||||
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
|
@ -52,35 +46,49 @@ class ClfSwitcher(BaseEstimator):
|
|||
#%%
|
||||
parameters = [
|
||||
|
||||
# {'fs__feature__min_features_to_select': [1]
|
||||
# , 'fs__feature__scoring': ['matthews_corrcoef']
|
||||
# , 'fs__feature__cv': [skf_cv]},
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
#, 'fs__scoring': ['matthews_corrcoef']
|
||||
, 'fs__cv': [skf_cv]},
|
||||
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
}#,
|
||||
# {
|
||||
# 'clf__estimator': [MODEL2(**rs)],
|
||||
# 'clf__estimator': [LogisticRegression(**rs)],
|
||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
# 'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
# 'clf__estimator__solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# 'clf__estimator': [LogisticRegression(**rs)],
|
||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
# 'clf__estimator__penalty': ['l2', 'none'],
|
||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
# 'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# 'clf__estimator': [LogisticRegression(**rs)],
|
||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
# 'clf__estimator__penalty': ['l1', 'l2'],
|
||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
# 'clf__estimator__solver': ['liblinear']
|
||||
# }
|
||||
|
||||
{'fs__min_features_to_select': [1,2]},
|
||||
{'classifier': [LogisticRegression()],
|
||||
#'classifier__C': np.logspace(0, 4, 10),
|
||||
'classifier__C': [2, 2.8],
|
||||
'classifier__max_iter': [100],
|
||||
'classifier__penalty': ['l1', 'l2'],
|
||||
'classifier__solver': ['saga']
|
||||
|
||||
}
|
||||
]
|
||||
#%% Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
||||
# , ('fs', ClfSwitcher())
|
||||
, ('clf', ClfSwitcher())
|
||||
# ('pre', MinMaxScaler())
|
||||
('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
||||
#, ('clf', ClfSwitcher())
|
||||
, ('classifier', ClfSwitcher())
|
||||
|
||||
])
|
||||
|
||||
#%%
|
||||
|
@ -95,81 +103,66 @@ gscv_lr = GridSearchCV(pipeline
|
|||
|
||||
# Fit
|
||||
gscv_lr.fit(X, y)
|
||||
gscv_lr.best_estimator_
|
||||
gscv_lr.best_params_
|
||||
gscv_lr.best_score_
|
||||
|
||||
# Blind test
|
||||
test_predict = gscv_lr.predict(X_bts)
|
||||
print(test_predict)
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
||||
|
||||
|
||||
|
||||
####
|
||||
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||
gscv_lr_fit.best_score_
|
||||
|
||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
|
||||
param_grid2 = [
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
, 'fs__cv': [skf_cv]
|
||||
},
|
||||
|
||||
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
'clf__solver': ['sag']
|
||||
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
# step 4: create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
#, ('fs', model_rfecv)
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
|
||||
, ('clf', LogisticRegression(**rs))])
|
||||
|
||||
# step 5: Perform Gridsearch CV
|
||||
gs_final = GridSearchCV(pipeline
|
||||
, param_grid2
|
||||
, cv = skf_cv
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, verbose = 1
|
||||
, return_train_score = False
|
||||
, **njobs)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%% Fit
|
||||
mod_fs_fit = mod_fs.fit(X, y)
|
||||
mod_fs_fbm = mod_fs_fit.best_params_
|
||||
mod_fs_fbmr = mod_fs_fit.cv_results_
|
||||
mod_fs_fbs = mod_fs_fit.best_score_
|
||||
print('Best model:\n', mod_fs_fbm)
|
||||
print('Best models score:\n', mod_fs_fbs, ':' , round(mod_fs_fbs, 2))
|
||||
print('Best model:\n', gscv_lr_fit_be_mod)
|
||||
print('Best models score:\n', gscv_lr_fit.best_score_, ':'
|
||||
, round(gscv_lr_fit.best_score_, 2))
|
||||
|
||||
#print('\nMean test score from fit results:', round(mean(mod_fs_fbmr['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(mod_fs_fbmr['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:'
|
||||
, round(np.nanmean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
#%% print selected features
|
||||
# Now get the features out
|
||||
all_features = gscv_lr.feature_names_in_
|
||||
#all_features = gsfit.feature_names_in_
|
||||
|
||||
sel_features = X.columns[gscv_lr.best_estimator_.named_steps['fs'].get_support()]
|
||||
n_sf = gscv_lr.best_estimator_.named_steps['fs'].n_features_
|
||||
|
||||
# get model name
|
||||
model_name = gscv_lr.best_estimator_.named_steps['clf']
|
||||
b_model_params = gscv_lr.best_params_
|
||||
|
||||
print('\n========================================'
|
||||
, '\nRunning model:'
|
||||
, '\nModel name:', model_name
|
||||
, '\n==============================================='
|
||||
, '\nRunning feature selection with RFECV for model'
|
||||
, '\nTotal no. of features in model:', len(all_features)
|
||||
, '\nThese are:\n', all_features, '\n\n'
|
||||
, '\nNo of features for best model: ', n_sf
|
||||
, '\nThese are:', sel_features, '\n\n'
|
||||
, '\nBest Model hyperparams:', b_model_params
|
||||
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
###############################################################################
|
||||
#%% Blind test
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
test_predict = mod_fs_fit.predict(X_bts)
|
||||
test_predict = gscv_lr.predict(X_bts)
|
||||
print(test_predict)
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
||||
|
|
|
@ -13,50 +13,50 @@ Created on Tue Mar 15 11:09:50 2022
|
|||
@author: tanu
|
||||
"""
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
model_lr = LogisticRegression(**rs)
|
||||
model_rfecv = RFECV(estimator = model_lr
|
||||
, cv = skf_cv
|
||||
#, cv = 10
|
||||
, min_features_to_select = 1 # default
|
||||
, scoring = 'matthews_corrcoef'
|
||||
)
|
||||
# model_lr = LogisticRegression(**rs)
|
||||
# model_rfecv = RFECV(estimator = model_lr
|
||||
# , cv = skf_cv
|
||||
# #, cv = 10
|
||||
# , min_features_to_select = 1 # default
|
||||
# , scoring = 'matthews_corrcoef'
|
||||
# )
|
||||
|
||||
param_grid2 = [
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['saga']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l2', 'none'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l1', 'l2'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['liblinear']
|
||||
}
|
||||
# param_grid2 = [
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l2', 'none'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l1', 'l2'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['liblinear']
|
||||
# }
|
||||
|
||||
]
|
||||
#-------------------------------------------------------------------------------
|
||||
# Grid search CV + FS
|
||||
gscv_lr = GridSearchCV(estimator = model_lr
|
||||
, param_grid = param_grid2
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, return_train_score = False
|
||||
, verbose = 3
|
||||
, **njobs)
|
||||
# ]
|
||||
# #-------------------------------------------------------------------------------
|
||||
# # Grid search CV + FS
|
||||
# gscv_lr = GridSearchCV(estimator = model_lr
|
||||
# , param_grid = param_grid2
|
||||
# , scoring = mcc_score_fn, refit = 'mcc'
|
||||
# , cv = skf_cv
|
||||
# , return_train_score = False
|
||||
# , verbose = 3
|
||||
# , **njobs)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
################
|
||||
|
@ -64,27 +64,27 @@ gscv_lr = GridSearchCV(estimator = model_lr
|
|||
# Cannot get BEST model out
|
||||
################
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
#, ('fs', sfs_selector)
|
||||
, ('fs', model_rfecv )
|
||||
, ('clf', gscv_lr)])
|
||||
# pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
# #, ('fs', sfs_selector)
|
||||
# , ('fs', model_rfecv )
|
||||
# , ('clf', gscv_lr)])
|
||||
|
||||
# Fit # dont assign fit
|
||||
#lr_fs_fit = pipeline.fit(X,y)
|
||||
pipeline.fit(X,y)
|
||||
# # Fit # dont assign fit
|
||||
# #lr_fs_fit = pipeline.fit(X,y)
|
||||
# pipeline.fit(X,y)
|
||||
|
||||
pipeline.best_params_
|
||||
# pipeline.best_params_
|
||||
|
||||
#https://github.com/scikit-learn/scikit-learn/issues/7536
|
||||
n_fs = gscv_lr.best_estimator_.n_features_in_
|
||||
n_fs
|
||||
# #https://github.com/scikit-learn/scikit-learn/issues/7536
|
||||
# n_fs = gscv_lr.best_estimator_.n_features_in_
|
||||
# n_fs
|
||||
|
||||
sel_features = X.columns[pipeline.named_steps['fs'].get_support()]
|
||||
print('\nNo. of features selected with RFECV for model'
|
||||
, pipeline.named_steps['clf'].estimator
|
||||
, ':', n_fs
|
||||
, '\nThese are:', sel_features
|
||||
)
|
||||
# sel_features = X.columns[pipeline.named_steps['fs'].get_support()]
|
||||
# print('\nNo. of features selected with RFECV for model'
|
||||
# , pipeline.named_steps['clf'].estimator
|
||||
# , ':', n_fs
|
||||
# , '\nThese are:', sel_features
|
||||
# )
|
||||
##############################################################
|
||||
# THIS ONE
|
||||
#########
|
||||
|
@ -106,28 +106,45 @@ param_grid2 = [
|
|||
|
||||
{'fs__min_features_to_select': [1]
|
||||
, 'fs__cv': [skf_cv]
|
||||
#, 'fs__scoring': ['matthews_corrcoef']},
|
||||
#, 'fs__scoring': [mcc_score_fn]}
|
||||
},
|
||||
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l2', 'none'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l1', 'l2'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['liblinear']
|
||||
# }
|
||||
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
{ #'clf': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
'clf__solver': ['sag']
|
||||
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
'clf__max_iter': [100],
|
||||
'clf__solver': ['liblinear']
|
||||
},
|
||||
|
||||
{ #'clf': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter':[100],
|
||||
'clf__solver': ['saga']
|
||||
}
|
||||
|
||||
|
||||
]
|
||||
# step 4: create pipeline
|
||||
pipeline = Pipeline([
|
||||
|
@ -149,12 +166,34 @@ gs_final = GridSearchCV(pipeline
|
|||
gs_final.fit(X,y)
|
||||
gs_final.best_params_
|
||||
gs_final.best_score_
|
||||
gs_final.best_estimator_
|
||||
|
||||
# assign the fit
|
||||
gsfit = gs_final.fit(X,y)
|
||||
#gsfit = gs_final.fit(X,y)
|
||||
#gsfit.best_estimator_
|
||||
gsfit.best_params_
|
||||
gsfit.best_score_
|
||||
#gsfit.best_params_
|
||||
#gsfit.best_score_
|
||||
|
||||
test_predict = gs_final.predict(X_bts)
|
||||
print(test_predict)
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Now get the features out
|
||||
all_features = gs_final.feature_names_in_
|
||||
|
@ -163,7 +202,6 @@ all_features = gs_final.feature_names_in_
|
|||
sel_features = X.columns[gs_final.best_estimator_.named_steps['fs'].get_support()]
|
||||
n_sf = gs_final.best_estimator_.named_steps['fs'].n_features_
|
||||
|
||||
|
||||
# get model name
|
||||
model_name = gs_final.best_estimator_.named_steps['clf']
|
||||
b_model_params = gs_final.best_params_
|
||||
|
@ -179,4 +217,37 @@ print('\n========================================'
|
|||
, '\nThese are:', sel_features, '\n\n'
|
||||
, '\nBest Model hyperparams:', b_model_params
|
||||
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
#test_predict = gscv_lr_fit.predict(X_bts)
|
||||
test_predict = gs_final.predict(X_bts)
|
||||
print(test_predict)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
131
uq_ml_models_FS/UQ_ABC.py
Normal file
131
uq_ml_models_FS/UQ_ABC.py
Normal file
|
@ -0,0 +1,131 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [AdaBoostClassifier(**rs)]
|
||||
, 'clf__estimator__n_estimators': [1, 2, 5, 10]
|
||||
#, 'clf__estimator__base_estimator' : ['SVC']
|
||||
#, 'clf__estimator___splitter' : ["best", "random"]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_abc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'matthews_corrcoef', refit = 'matthews_corrcoef'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_abc_fit = gscv_abc.fit(X, y)
|
||||
|
||||
gscv_abc_fit_be_mod = gscv_abc_fit.best_params_
|
||||
gscv_abc_fit_be_res = gscv_abc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_abc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_abc_fit.best_score_, ':' , round(gscv_abc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_abc_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_abc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_abc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
abc_bts_dict = {#'best_model': list(gscv_abc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
abc_bts_dict
|
||||
abc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
abc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
abc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
abc_bts_df = pd.DataFrame.from_dict(abc_bts_dict,orient = 'index')
|
||||
abc_bts_df.columns = ['ABC']
|
||||
print(abc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_abc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['ABC']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
abc_bts_df.columns
|
||||
abc_output = pd.concat([model_params_df, abc_bts_df], axis = 0)
|
||||
abc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from abc_output
|
||||
abc_df = abc_output.drop([0], axis = 0)
|
||||
abc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
134
uq_ml_models_FS/UQ_BC.py
Normal file
134
uq_ml_models_FS/UQ_BC.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [BaggingClassifier(**rs
|
||||
, **njobs
|
||||
, bootstrap = True
|
||||
, oob_score = True)]
|
||||
, 'clf__estimator__n_estimators' : [10, 25, 50, 100, 150, 200, 500, 700, 1000]
|
||||
# If None, then the base estimator is a DecisionTreeClassifier.
|
||||
#, 'clf__estimator__base_estimator' : ['None', 'SVC()', 'KNeighborsClassifier()']# if none, DT is used
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_bc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_bc_fit = gscv_bc.fit(X, y)
|
||||
|
||||
gscv_bc_fit_be_mod = gscv_bc_fit.best_params_
|
||||
gscv_bc_fit_be_res = gscv_bc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_bc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_bc_fit.best_score_, ':' , round(gscv_bc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_bc_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_bc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_bc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
bc_bts_dict = {#'best_model': list(gscv_bc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
bc_bts_dict
|
||||
bc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
bc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
bc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
bc_bts_df = pd.DataFrame.from_dict(bc_bts_dict,orient = 'index')
|
||||
bc_bts_df.columns = ['BC']
|
||||
print(bc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_bc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['BC']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
bc_bts_df.columns
|
||||
bc_output = pd.concat([model_params_df, bc_bts_df], axis = 0)
|
||||
bc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from bc_output
|
||||
bc_df = bc_output.drop([0], axis = 0)
|
||||
bc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
132
uq_ml_models_FS/UQ_BNB.py
Normal file
132
uq_ml_models_FS/UQ_BNB.py
Normal file
|
@ -0,0 +1,132 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [BernoulliNB()]
|
||||
, 'clf__estimator__alpha': [1, 0]
|
||||
, 'clf__estimator__binarize':[None, 0]
|
||||
, 'clf__estimator__fit_prior': [True]
|
||||
, 'clf__estimator__class_prior': [None]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_bnb = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_bnb_fit = gscv_bnb.fit(X, y)
|
||||
|
||||
gscv_bnb_fit_be_mod = gscv_bnb_fit.best_params_
|
||||
gscv_bnb_fit_be_res = gscv_bnb_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_bnb_fit_be_mod)
|
||||
print('Best models score:\n', gscv_bnb_fit.best_score_, ':' , round(gscv_bnb_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_bnb_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_bnb_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_bnb_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
bnb_bts_dict = {#'best_model': list(gscv_bnb_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
bnb_bts_dict
|
||||
bnb_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
bnb_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
bnb_bts_df = pd.DataFrame.from_dict(bnb_bts_dict,orient = 'index')
|
||||
bnb_bts_df.columns = ['BNB']
|
||||
print(bnb_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_bnb_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['BNB']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
bnb_bts_df.columns
|
||||
bnb_output = pd.concat([model_params_df, bnb_bts_df], axis = 0)
|
||||
bnb_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from bnb_output
|
||||
bnb_df = bnb_output.drop([0], axis = 0)
|
||||
bnb_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
134
uq_ml_models_FS/UQ_DT.py
Normal file
134
uq_ml_models_FS/UQ_DT.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [DecisionTreeClassifier(**rs)]
|
||||
, 'clf__estimator__max_depth': [None, 2, 4, 6, 8, 10, 12, 16, 20]
|
||||
, 'clf__estimator__class_weight':['balanced']
|
||||
, 'clf__estimator__criterion': ['gini', 'entropy', 'log_loss']
|
||||
, 'clf__estimator__max_features': [None, 'sqrt', 'log2']
|
||||
, 'clf__estimator__min_samples_leaf': [1, 2, 3, 4, 5, 10]
|
||||
, 'clf__estimator__min_samples_split': [2, 5, 15, 20]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_dt = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_dt_fit = gscv_dt.fit(X, y)
|
||||
|
||||
gscv_dt_fit_be_mod = gscv_dt_fit.best_params_
|
||||
gscv_dt_fit_be_res = gscv_dt_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_dt_fit_be_mod)
|
||||
print('Best models score:\n', gscv_dt_fit.best_score_, ':' , round(gscv_dt_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_dt_fit_be_re['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_dt_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_dt_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
dt_bts_dict = {#'best_model': list(gscv_dt_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
dt_bts_dict
|
||||
dt_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
dt_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
dt_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
dt_bts_df = pd.DataFrame.from_dict(dt_bts_dict,orient = 'index')
|
||||
dt_bts_df.columns = ['DT']
|
||||
print(dt_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_dt_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['DT']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
dt_bts_df.columns
|
||||
dt_output = pd.concat([model_params_df, dt_bts_df], axis = 0)
|
||||
dt_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from dt_output
|
||||
dt_df = dt_output.drop([0], axis = 0)
|
||||
dt_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
134
uq_ml_models_FS/UQ_GBC.py
Normal file
134
uq_ml_models_FS/UQ_GBC.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [GradientBoostingClassifier(**rs)]
|
||||
, 'clf__estimator__n_estimators' : [10, 100, 200, 500, 1000]
|
||||
, 'clf__estimator__n_estimators' : [10, 100, 1000]
|
||||
, 'clf__estimator__learning_rate': [0.001, 0.01, 0.1]
|
||||
, 'clf__estimator__subsample' : [0.5, 0.7, 1.0]
|
||||
, 'clf__estimator__max_depth' : [3, 7, 9]
|
||||
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_gbc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_gbc_fit = gscv_gbc.fit(X, y)
|
||||
|
||||
gscv_gbc_fit_be_mod = gscv_gbc_fit.best_params_
|
||||
gscv_gbc_fit_be_res = gscv_gbc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_gbc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_gbc_fit.best_score_, ':' , round(gscv_gbc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_gbc_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_gbc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_gbc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
gbc_bts_dict = {#'best_model': list(gscv_gbc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
gbc_bts_dict
|
||||
gbc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
gbc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
gbc_bts_df = pd.DataFrame.from_dict(gbc_bts_dict,orient = 'index')
|
||||
gbc_bts_df.columns = ['GBC']
|
||||
print(gbc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_gbc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['GBC']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
gbc_bts_df.columns
|
||||
gbc_output = pd.concat([model_params_df, gbc_bts_df], axis = 0)
|
||||
gbc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from gbc_output
|
||||
gbc_df = gbc_output.drop([0], axis = 0)
|
||||
gbc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
130
uq_ml_models_FS/UQ_GNB.py
Normal file
130
uq_ml_models_FS/UQ_GNB.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [GaussianNB()]
|
||||
, 'clf__estimator__priors': [None]
|
||||
, 'clf__estimator__var_smoothing': np.logspace(0,-9, num=100)
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_gnb = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_gnb_fit = gscv_gnb.fit(X, y)
|
||||
|
||||
gscv_gnb_fit_be_mod = gscv_gnb_fit.best_params_
|
||||
gscv_gnb_fit_be_res = gscv_gnb_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_gnb_fit_be_mod)
|
||||
print('Best models score:\n', gscv_gnb_fit.best_score_, ':' , round(gscv_gnb_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_gnb_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_gnb_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_gnb_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
gnb_bts_dict = {#'best_model': list(gscv_gnb_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
gnb_bts_dict
|
||||
gnb_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
gnb_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
gnb_bts_df = pd.DataFrame.from_dict(gnb_bts_dict,orient = 'index')
|
||||
gnb_bts_df.columns = ['GNB']
|
||||
print(gnb_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_gnb_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['GNB']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
gnb_bts_df.columns
|
||||
gnb_output = pd.concat([model_params_df, gnb_bts_df], axis = 0)
|
||||
gnb_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from gnb_output
|
||||
gnb_df = gnb_output.drop([0], axis = 0)
|
||||
gnb_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
130
uq_ml_models_FS/UQ_GPC.py
Normal file
130
uq_ml_models_FS/UQ_GPC.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [GaussianProcessClassifier(**rs)]
|
||||
|
||||
, 'clf__estimator__kernel': [1*RBF(), 1*DotProduct(), 1*Matern(), 1*RationalQuadratic(), 1*WhiteKernel()]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_gpc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_gpc_fit = gscv_gpc.fit(X, y)
|
||||
|
||||
gscv_gpc_fit_be_mod = gscv_gpc_fit.best_params_
|
||||
gscv_gpc_fit_be_res = gscv_gpc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_gpc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_gpc_fit.best_score_, ':' , round(gscv_gpc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_gpc_fit_be_re['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_gpc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_gpc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
gpc_bts_dict = {#'best_model': list(gscv_gpc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
gpc_bts_dict
|
||||
gpc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
gpc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
gpc_bts_df = pd.DataFrame.from_dict(gpc_bts_dict,orient = 'index')
|
||||
gpc_bts_df.columns = ['GPC']
|
||||
print(gpc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_gpc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['GPC']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
gpc_bts_df.columns
|
||||
gpc_output = pd.concat([model_params_df, gpc_bts_df], axis = 0)
|
||||
gpc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from gpc_output
|
||||
gpc_df = gpc_output.drop([0], axis = 0)
|
||||
gpc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
133
uq_ml_models_FS/UQ_KNN.py
Normal file
133
uq_ml_models_FS/UQ_KNN.py
Normal file
|
@ -0,0 +1,133 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [KNeighborsClassifier(**njobs)]
|
||||
, 'clf__estimator__n_neighbors': range(21, 51, 2)
|
||||
#, 'clf__estimator__n_neighbors': [5, 7, 11]
|
||||
, 'clf__estimator__metric' : ['euclidean', 'manhattan', 'minkowski']
|
||||
, 'clf__estimator__weights' : ['uniform', 'distance']
|
||||
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_knn = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_knn_fit = gscv_knn.fit(X, y)
|
||||
|
||||
gscv_knn_fit_be_mod = gscv_knn_fit.best_params_
|
||||
gscv_knn_fit_be_res = gscv_knn_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_knn_fit_be_mod)
|
||||
print('Best models score:\n', gscv_knn_fit.best_score_, ':' , round(gscv_knn_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_knn_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_knn_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_knn_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
knn_bts_dict = {#'best_model': list(gscv_knn_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
knn_bts_dict
|
||||
knn_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
knn_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
knn_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
knn_bts_df = pd.DataFrame.from_dict(knn_bts_dict,orient = 'index')
|
||||
knn_bts_df.columns = ['KNN']
|
||||
print(knn_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_knn_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['KNN']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
knn_bts_df.columns
|
||||
knn_output = pd.concat([model_params_df, knn_bts_df], axis = 0)
|
||||
knn_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from knn_output
|
||||
knn_df = knn_output.drop([0], axis = 0)
|
||||
knn_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
205
uq_ml_models_FS/UQ_LR.py
Normal file
205
uq_ml_models_FS/UQ_LR.py
Normal file
|
@ -0,0 +1,205 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon May 16 05:59:12 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Import libs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from xgboost import XGBClassifier
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
#%% Get train-test split and scoring functions
|
||||
# X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
||||
# , num_df_wtgt['mutation_class']
|
||||
# , test_size = 0.33
|
||||
# , random_state = 2
|
||||
# , shuffle = True
|
||||
# , stratify = num_df_wtgt['mutation_class'])
|
||||
|
||||
y.to_frame().value_counts().plot(kind = 'bar')
|
||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
},
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['l2', 'none'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['l1', 'l2'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_lr = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_lr_fit_be_mod)
|
||||
print('Best models score:\n', gscv_lr_fit.best_score_, ':' , round(gscv_lr_fit.best_score_, 2))
|
||||
|
||||
#print('\nMean test score from fit results:', round(mean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
test_predict = gscv_lr_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
lr_bts_df = pd.DataFrame.from_dict(lr_bts_dict,orient = 'index')
|
||||
lr_bts_df.columns = ['Logistic_Regression']
|
||||
print(lr_bts_df)
|
||||
|
||||
# d2 = {'best_model_params': lis(gscv_lr_fit_be_mod.items() )}
|
||||
# d2
|
||||
# def Merge(dict1, dict2):
|
||||
# res = {**dict1, **dict2}
|
||||
# return res
|
||||
# d3 = Merge(d2, lr_bts_dict)
|
||||
# d3
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_lr_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
lr_bts_df.columns
|
||||
lr_output = pd.concat([model_params_df, lr_bts_df], axis = 0)
|
||||
lr_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from lr_output
|
||||
lr_df = lr_output.drop([0], axis = 0)
|
||||
lr_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
154
uq_ml_models_FS/UQ_LR_FS.py
Normal file
154
uq_ml_models_FS/UQ_LR_FS.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon May 16 05:59:12 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
model_lr = LogisticRegression(**rs)
|
||||
model_rfecv = RFECV(estimator = model_lr
|
||||
, cv = rskf_cv
|
||||
#, cv = 10
|
||||
, scoring = 'matthews_corrcoef'
|
||||
)
|
||||
|
||||
param_grid2 = [
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['saga']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l2', 'none'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l1', 'l2'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Grid search CV + FS
|
||||
gscv_lr = GridSearchCV(model_lr
|
||||
, param_grid2
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, return_train_score = False
|
||||
, verbose = 3
|
||||
, **njobs)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
#, ('feature_selection', sfs_selector)
|
||||
, ('feature_selection', model_rfecv )
|
||||
, ('clf', gscv_lr)])
|
||||
|
||||
# Fit
|
||||
lr_fs_fit = pipeline.fit(X,y)
|
||||
#lr_fs_fit_be_mod = lr_fs_fit.best_params_
|
||||
#lr_fs_fit_be_res = lr_fs_fit.cv_results_
|
||||
dir(lr_fs_fit)
|
||||
|
||||
print('Best model:\n', lr_fs_fit_be_mod)
|
||||
print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2))
|
||||
|
||||
pipeline.predict(X_bts)
|
||||
lr_fs_fit.predict(X_bts)
|
||||
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
#y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
test_predict = lr_fs_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
lr_bts_df = pd.DataFrame.from_dict(lr_bts_dict,orient = 'index')
|
||||
lr_bts_df.columns = ['Logistic_Regression']
|
||||
print(lr_bts_df)
|
||||
|
||||
# d2 = {'best_model_params': lis(gscv_lr_fit_be_mod.items() )}
|
||||
# d2
|
||||
# def Merge(dict1, dict2):
|
||||
# res = {**dict1, **dict2}
|
||||
# return res
|
||||
# d3 = Merge(d2, lr_bts_dict)
|
||||
# d3
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(lr_fs_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
lr_bts_df.columns
|
||||
lr_output = pd.concat([model_params_df, lr_bts_df], axis = 0)
|
||||
lr_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from lr_output
|
||||
lr_df = lr_output.drop([0], axis = 0)
|
||||
lr_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
253
uq_ml_models_FS/UQ_LR_FS2.py
Normal file
253
uq_ml_models_FS/UQ_LR_FS2.py
Normal file
|
@ -0,0 +1,253 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon May 16 05:59:12 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
# model_lr = LogisticRegression(**rs)
|
||||
# model_rfecv = RFECV(estimator = model_lr
|
||||
# , cv = skf_cv
|
||||
# #, cv = 10
|
||||
# , min_features_to_select = 1 # default
|
||||
# , scoring = 'matthews_corrcoef'
|
||||
# )
|
||||
|
||||
# param_grid2 = [
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l2', 'none'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# #'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l1', 'l2'],
|
||||
# 'max_iter': list(range(100,800,100)),
|
||||
# 'solver': ['liblinear']
|
||||
# }
|
||||
|
||||
# ]
|
||||
# #-------------------------------------------------------------------------------
|
||||
# # Grid search CV + FS
|
||||
# gscv_lr = GridSearchCV(estimator = model_lr
|
||||
# , param_grid = param_grid2
|
||||
# , scoring = mcc_score_fn, refit = 'mcc'
|
||||
# , cv = skf_cv
|
||||
# , return_train_score = False
|
||||
# , verbose = 3
|
||||
# , **njobs)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
################
|
||||
# NOTE: GS is going into pipeline,
|
||||
# Cannot get BEST model out
|
||||
################
|
||||
# Create pipeline
|
||||
# pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
# #, ('fs', sfs_selector)
|
||||
# , ('fs', model_rfecv )
|
||||
# , ('clf', gscv_lr)])
|
||||
|
||||
# # Fit # dont assign fit
|
||||
# #lr_fs_fit = pipeline.fit(X,y)
|
||||
# pipeline.fit(X,y)
|
||||
|
||||
# pipeline.best_params_
|
||||
|
||||
# #https://github.com/scikit-learn/scikit-learn/issues/7536
|
||||
# n_fs = gscv_lr.best_estimator_.n_features_in_
|
||||
# n_fs
|
||||
|
||||
# sel_features = X.columns[pipeline.named_steps['fs'].get_support()]
|
||||
# print('\nNo. of features selected with RFECV for model'
|
||||
# , pipeline.named_steps['clf'].estimator
|
||||
# , ':', n_fs
|
||||
# , '\nThese are:', sel_features
|
||||
# )
|
||||
##############################################################
|
||||
# THIS ONE
|
||||
#########
|
||||
# Make Pipeline go into GS with FS
|
||||
#########
|
||||
|
||||
# step 1: specify model
|
||||
#modLR = LogisticRegression(**rs)
|
||||
|
||||
# step 2: specify fs
|
||||
#model_rfecv = RFECV(estimator = model_lr
|
||||
# , cv = skf_cv
|
||||
#, min_features_to_select = 1 # default
|
||||
#, scoring = 'matthews_corrcoef'
|
||||
#)
|
||||
|
||||
# step 3: specify param grid as dict
|
||||
param_grid2 = [
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
, 'fs__cv': [skf_cv]
|
||||
},
|
||||
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l2', 'none'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# #'clf': [LogisticRegression(**rs)],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l1', 'l2'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['liblinear']
|
||||
# }
|
||||
|
||||
{ #'clf': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter': [100],
|
||||
'clf__solver': ['liblinear']
|
||||
},
|
||||
|
||||
{ #'clf': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter':[100],
|
||||
'clf__solver': ['saga']
|
||||
}
|
||||
|
||||
|
||||
]
|
||||
# step 4: create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
#, ('fs', model_rfecv)
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
|
||||
, ('clf', LogisticRegression(**rs))])
|
||||
|
||||
# step 5: Perform Gridsearch CV
|
||||
gs_final = GridSearchCV(pipeline
|
||||
, param_grid2
|
||||
, cv = skf_cv
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, verbose = 1
|
||||
, return_train_score = False
|
||||
, **njobs)
|
||||
|
||||
#fit
|
||||
gs_final.fit(X,y)
|
||||
gs_final.best_params_
|
||||
gs_final.best_score_
|
||||
gs_final.best_estimator_
|
||||
|
||||
# assign the fit
|
||||
#gsfit = gs_final.fit(X,y)
|
||||
#gsfit.best_estimator_
|
||||
#gsfit.best_params_
|
||||
#gsfit.best_score_
|
||||
|
||||
test_predict = gs_final.predict(X_bts)
|
||||
print(test_predict)
|
||||
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Now get the features out
|
||||
all_features = gs_final.feature_names_in_
|
||||
#all_features = gsfit.feature_names_in_
|
||||
|
||||
sel_features = X.columns[gs_final.best_estimator_.named_steps['fs'].get_support()]
|
||||
n_sf = gs_final.best_estimator_.named_steps['fs'].n_features_
|
||||
|
||||
# get model name
|
||||
model_name = gs_final.best_estimator_.named_steps['clf']
|
||||
b_model_params = gs_final.best_params_
|
||||
|
||||
print('\n========================================'
|
||||
, '\nRunning model:'
|
||||
, '\nModel name:', model_name
|
||||
, '\n==============================================='
|
||||
, '\nRunning feature selection with RFECV for model'
|
||||
, '\nTotal no. of features in model:', len(all_features)
|
||||
, '\nThese are:\n', all_features, '\n\n'
|
||||
, '\nNo of features for best model: ', n_sf
|
||||
, '\nThese are:', sel_features, '\n\n'
|
||||
, '\nBest Model hyperparams:', b_model_params
|
||||
|
||||
)
|
||||
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
#test_predict = gscv_lr_fit.predict(X_bts)
|
||||
test_predict = gs_final.predict(X_bts)
|
||||
print(test_predict)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
134
uq_ml_models_FS/UQ_MLP.py
Normal file
134
uq_ml_models_FS/UQ_MLP.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [MLPClassifier(**rs
|
||||
, max_iter = 1000)]
|
||||
, 'clf__estimator__hidden_layer_sizes': [(1), (2), (3), (5), (10)]
|
||||
, 'clf__estimator__solver': ['lbfgs', 'sgd', 'adam']
|
||||
, 'clf__estimator__learning_rate': ['constant', 'invscaling', 'adaptive']
|
||||
#, 'clf__estimator__learning_rate': ['constant']
|
||||
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_mlp = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_mlp_fit = gscv_mlp.fit(X, y)
|
||||
|
||||
gscv_mlp_fit_be_mod = gscv_mlp_fit.best_params_
|
||||
gscv_mlp_fit_be_res = gscv_mlp_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_mlp_fit_be_mod)
|
||||
print('Best models score:\n', gscv_mlp_fit.best_score_, ':' , round(gscv_mlp_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_mlp_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_mlp_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_mlp_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
mlp_bts_dict = {#'best_model': list(gscv_mlp_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
mlp_bts_dict
|
||||
mlp_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
mlp_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
mlp_bts_df = pd.DataFrame.from_dict(mlp_bts_dict,orient = 'index')
|
||||
mlp_bts_df.columns = ['MLP']
|
||||
print(mlp_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_mlp_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['MLP']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
mlp_bts_df.columns
|
||||
mlp_output = pd.concat([model_params_df, mlp_bts_df], axis = 0)
|
||||
mlp_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from mlp_output
|
||||
mlp_df = mlp_output.drop([0], axis = 0)
|
||||
mlp_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
129
uq_ml_models_FS/UQ_QDA.py
Normal file
129
uq_ml_models_FS/UQ_QDA.py
Normal file
|
@ -0,0 +1,129 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [QuadraticDiscriminantAnalysis()]
|
||||
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_qda = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_qda_fit = gscv_qda.fit(X, y)
|
||||
|
||||
gscv_qda_fit_be_mod = gscv_qda_fit.best_params_
|
||||
gscv_qda_fit_be_res = gscv_qda_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_qda_fit_be_mod)
|
||||
print('Best models score:\n', gscv_qda_fit.best_score_, ':' , round(gscv_qda_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_qda_fit_be_re['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_qda_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_qda_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
qda_bts_dict = {#'best_model': list(gscv_qda_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
qda_bts_dict
|
||||
qda_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
qda_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
qda_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
qda_bts_df = pd.DataFrame.from_dict(qda_bts_dict,orient = 'index')
|
||||
qda_bts_df.columns = ['QDA']
|
||||
print(qda_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_qda_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['QDA']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
qda_bts_df.columns
|
||||
qda_output = pd.concat([model_params_df, qda_bts_df], axis = 0)
|
||||
qda_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from qda_output
|
||||
qda_df = qda_output.drop([0], axis = 0)
|
||||
qda_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
128
uq_ml_models_FS/UQ_RC.py
Normal file
128
uq_ml_models_FS/UQ_RC.py
Normal file
|
@ -0,0 +1,128 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{'clf__estimator' : [RidgeClassifier(**rs)]
|
||||
, 'clf__estimator__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_rc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_rc_fit = gscv_rc.fit(X, y)
|
||||
|
||||
gscv_rc_fit_be_mod = gscv_rc_fit.best_params_
|
||||
gscv_rc_fit_be_res = gscv_rc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_rc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_rc_fit.best_score_, ':' , round(gscv_rc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_rc_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_rc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_rc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
rc_bts_dict = {#'best_model': list(gscv_rc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
rc_bts_dict
|
||||
rc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
rc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
rc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
rc_bts_df = pd.DataFrame.from_dict(rc_bts_dict,orient = 'index')
|
||||
rc_bts_df.columns = ['Ridge Classifier']
|
||||
print(rc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_rc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Ridge Classifier']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
rc_bts_df.columns
|
||||
rc_output = pd.concat([model_params_df, rc_bts_df], axis = 0)
|
||||
rc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from rc_output
|
||||
rc_df = rc_output.drop([0], axis = 0)
|
||||
rc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
138
uq_ml_models_FS/UQ_RF.py
Normal file
138
uq_ml_models_FS/UQ_RF.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [RandomForestClassifier(**rs
|
||||
, **njobs
|
||||
, bootstrap = True
|
||||
, oob_score = True)],
|
||||
'clf__estimator__max_depth': [4, 6, 8, 10, 12, 16, 20, None]
|
||||
, 'clf__estimator__class_weight':['balanced','balanced_subsample']
|
||||
, 'clf__estimator__n_estimators': [10, 25, 50, 100]
|
||||
, 'clf__estimator__criterion': ['gini', 'entropy', 'log_loss']
|
||||
, 'clf__estimator__max_features': ['sqrt', 'log2', None] #deafult is sqrt
|
||||
, 'clf__estimator__min_samples_leaf': [1, 2, 3, 4, 5, 10]
|
||||
, 'clf__estimator__min_samples_split': [2, 5, 15, 20]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_rf = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_rf_fit = gscv_rf.fit(X, y)
|
||||
|
||||
gscv_rf_fit_be_mod = gscv_rf_fit.best_params_
|
||||
gscv_rf_fit_be_res = gscv_rf_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_rf_fit_be_mod)
|
||||
print('Best models score:\n', gscv_rf_fit.best_score_, ':' , round(gscv_rf_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_rf_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_rf_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_rf_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
rf_bts_dict = {#'best_model': list(gscv_rf_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
rf_bts_dict
|
||||
rf_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
rf_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
rf_bts_df = pd.DataFrame.from_dict(rf_bts_dict,orient = 'index')
|
||||
rf_bts_df.columns = ['Logistic_Regression']
|
||||
print(rf_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_rf_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
rf_bts_df.columns
|
||||
rf_output = pd.concat([model_params_df, rf_bts_df], axis = 0)
|
||||
rf_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from rf_output
|
||||
rf_df = rf_output.drop([0], axis = 0)
|
||||
rf_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
134
uq_ml_models_FS/UQ_SVC.py
Normal file
134
uq_ml_models_FS/UQ_SVC.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [SVC(**rs)]
|
||||
, 'clf__estimator__kernel': ['poly', 'rbf', 'sigmoid']
|
||||
#, 'clf__estimator__kernel': ['linear']
|
||||
|
||||
, 'clf__estimator__C' : [50, 10, 1.0, 0.1, 0.01]
|
||||
, 'clf__estimator__gamma': ['scale', 'auto']
|
||||
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_svc = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_svc_fit = gscv_svc.fit(X, y)
|
||||
|
||||
gscv_svc_fit_be_mod = gscv_svc_fit.best_params_
|
||||
gscv_svc_fit_be_res = gscv_svc_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_svc_fit_be_mod)
|
||||
print('Best models score:\n', gscv_svc_fit.best_score_, ':' , round(gscv_svc_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_svc_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_svc_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_svc_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
svc_bts_dict = {#'best_model': list(gscv_svc_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
svc_bts_dict
|
||||
svc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
svc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
svc_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
svc_bts_df = pd.DataFrame.from_dict(svc_bts_dict,orient = 'index')
|
||||
svc_bts_df.columns = ['SVC']
|
||||
print(svc_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_svc_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['SVC']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
svc_bts_df.columns
|
||||
svc_output = pd.concat([model_params_df, svc_bts_df], axis = 0)
|
||||
svc_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from svc_output
|
||||
svc_df = svc_output.drop([0], axis = 0)
|
||||
svc_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
143
uq_ml_models_FS/UQ_XGB.py
Normal file
143
uq_ml_models_FS/UQ_XGB.py
Normal file
|
@ -0,0 +1,143 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
#%%
|
||||
#https://www.datatechnotes.com/2019/07/classification-example-with.html
|
||||
# XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
|
||||
# colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1,
|
||||
# max_delta_step=0, max_depth=3, min_child_weight=1, missing=None,
|
||||
# n_estimators=100, n_jobs=1, nthread=None,
|
||||
# objective='multi:softprob', random_state=0, reg_alpha=0,
|
||||
# reg_lambda=1, scale_pos_weight=1, seed=None, silent=None,
|
||||
# subsample=1, verbosity=1)
|
||||
|
||||
#%% XGBoost + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [XGBClassifier(**rs , **njobs, verbose = 3)]
|
||||
, 'clf__estimator__learning_rate': [0.01, 0.05, 0.1, 0.2]
|
||||
, 'clf__estimator__max_depth': [4, 6, 8, 10, 12, 16, 20]
|
||||
#, 'clf__estimator__min_samples_leaf': [4, 8, 12, 16, 20]
|
||||
#, 'clf__estimator__max_features': ['auto', 'sqrt']
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_xgb = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_xgb_fit = gscv_xgb.fit(X, y)
|
||||
|
||||
gscv_xgb_fit_be_mod = gscv_xgb_fit.best_params_
|
||||
gscv_xgb_fit_be_res = gscv_xgb_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_xgb_fit_be_mod)
|
||||
print('Best models score:\n', gscv_xgb_fit.best_score_, ':' , round(gscv_xgb_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_xgb_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_xgb_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_xgb_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
xgb_bts_dict = {#'best_model': list(gscv_xgb_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
xgb_bts_dict
|
||||
xgb_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
xgb_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
xgb_bts_df = pd.DataFrame.from_dict(xgb_bts_dict,orient = 'index')
|
||||
xgb_bts_df.columns = ['XGBoost']
|
||||
print(xgb_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_xgb_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['XGBoost']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
xgb_bts_df.columns
|
||||
xgb_output = pd.concat([model_params_df, xgb_bts_df], axis = 0)
|
||||
xgb_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from xgb_output
|
||||
xgb_df = xgb_output.drop([0], axis = 0)
|
||||
xgb_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
8
uq_ml_models_FS/pnca_num_fs_hy.txt
Normal file
8
uq_ml_models_FS/pnca_num_fs_hy.txt
Normal file
|
@ -0,0 +1,8 @@
|
|||
Logistic_Regression
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.34
|
||||
bts_precision 0.61
|
||||
bts_recall 0.87
|
||||
bts_accuracy 0.65
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.55
|
316
uq_ml_models_FS/pnca_num_hy.txt
Normal file
316
uq_ml_models_FS/pnca_num_hy.txt
Normal file
|
@ -0,0 +1,316 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri May 20 00:36:17 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
# pnca [ numerical ONLY + NO oversampling]
|
||||
|
||||
# LR: hyperparm
|
||||
|
||||
{'clf__estimator': LogisticRegression(penalty='l1', random_state=42, solver='saga'),
|
||||
'clf__estimator__C': 1.0,
|
||||
'clf__estimator__max_iter': 100,
|
||||
'clf__estimator__penalty': 'l1',
|
||||
'clf__estimator__solver': 'saga'}
|
||||
|
||||
Logistic_Regression
|
||||
bts_fscore 0.70
|
||||
bts_mcc 0.29
|
||||
bts_precision 0.57
|
||||
bts_recall 0.92
|
||||
bts_accuracy 0.61
|
||||
bts_roc_auc 0.61
|
||||
bts_jaccard 0.54
|
||||
|
||||
# LR: FS + hyperparam
|
||||
{'bts_fscore': 0.71,
|
||||
'bts_mcc': 0.34,
|
||||
'bts_precision': 0.61,
|
||||
'bts_recall': 0.87,
|
||||
'bts_accuracy': 0.65,
|
||||
'bts_roc_auc': 0.65,
|
||||
'bts_jaccard': 0.55}
|
||||
#######################################################################
|
||||
# RF: hyperparam [~45]
|
||||
|
||||
Best model:
|
||||
{'clf__estimator': RandomForestClassifier(class_weight='balanced', max_depth=4, max_features=None,
|
||||
min_samples_leaf=2, min_samples_split=15,
|
||||
n_estimators=10, n_jobs=10, oob_score=True,
|
||||
random_state=42), 'clf__estimator__class_weight': 'balanced', 'clf__estimator__criterion': 'gini', 'clf__estimator__max_depth': 4, 'clf__estimator__max_features': None, 'clf__estimator__min_samples_leaf': 2, 'clf__estimator__min_samples_split': 15, 'clf__estimator__n_estimators': 10}
|
||||
Best models score:
|
||||
0.3329374281771619 : 0.33
|
||||
|
||||
RF
|
||||
bts_fscore 0.69
|
||||
bts_mcc 0.37
|
||||
bts_precision 0.67
|
||||
bts_recall 0.72
|
||||
bts_accuracy 0.68
|
||||
bts_roc_auc 0.68
|
||||
bts_jaccard 0.53
|
||||
|
||||
|
||||
#######################################################################
|
||||
# ABC: hyperparam
|
||||
|
||||
{'clf__estimator': AdaBoostClassifier(n_estimators=2, random_state=42),
|
||||
'clf__estimator__n_estimators': 2}
|
||||
ABC
|
||||
1 [(clf__estimator, AdaBoostClassifier(n_estimat...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.36
|
||||
bts_precision 0.63
|
||||
bts_recall 0.83
|
||||
bts_accuracy 0.67
|
||||
bts_roc_auc 0.67
|
||||
bts_jaccard 0.56
|
||||
#######################################################################
|
||||
# BC: hyperparam
|
||||
{'clf__estimator': BaggingClassifier(n_estimators=200, n_jobs=10, oob_score=True, random_state=42),
|
||||
'clf__estimator__n_estimators': 200}
|
||||
BC
|
||||
0 best_model_params
|
||||
1 [(clf__estimator, BaggingClassifier(n_estimato...
|
||||
bts_fscore 0.72
|
||||
bts_mcc 0.37
|
||||
bts_precision 0.64
|
||||
bts_recall 0.82
|
||||
bts_accuracy 0.68
|
||||
bts_roc_auc 0.68
|
||||
bts_jaccard 0.56
|
||||
#######################################################################
|
||||
# BNB: hyperparam
|
||||
{'clf__estimator': BernoulliNB(alpha=1, binarize=None),
|
||||
'clf__estimator__alpha': 1,
|
||||
'clf__estimator__binarize': None,
|
||||
'clf__estimator__class_prior': None,
|
||||
'clf__estimator__fit_prior': True}
|
||||
|
||||
BNB
|
||||
1 [(clf__estimator, BernoulliNB(alpha=1, binariz...
|
||||
bts_fscore 0.72
|
||||
bts_mcc 0.35
|
||||
bts_precision 0.6
|
||||
bts_recall 0.92
|
||||
bts_accuracy 0.65
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.56
|
||||
#######################################################################
|
||||
# DT: hyperparam
|
||||
{'clf__estimator': DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
|
||||
max_depth=2, random_state=42),
|
||||
'clf__estimator__class_weight': 'balanced',
|
||||
'clf__estimator__criterion': 'entropy',
|
||||
'clf__estimator__max_depth': 2,
|
||||
'clf__estimator__max_features': None,
|
||||
'clf__estimator__min_samples_leaf': 1,
|
||||
'clf__estimator__min_samples_split': 2}
|
||||
|
||||
|
||||
DT
|
||||
1 [(clf__estimator, DecisionTreeClassifier(class...
|
||||
bts_fscore 0.72
|
||||
bts_mcc 0.42
|
||||
bts_precision 0.69
|
||||
bts_recall 0.76
|
||||
bts_accuracy 0.71
|
||||
bts_roc_auc 0.71
|
||||
bts_jaccard 0.57
|
||||
#######################################################################
|
||||
# GBC: hyperparam
|
||||
{'clf__estimator': GradientBoostingClassifier(learning_rate=0.01, max_depth=7, random_state=42,
|
||||
subsample=0.5),
|
||||
'clf__estimator__learning_rate': 0.01,
|
||||
'clf__estimator__max_depth': 7,
|
||||
'clf__estimator__n_estimators': 100,
|
||||
'clf__estimator__subsample': 0.5}
|
||||
|
||||
|
||||
GBC
|
||||
1 [(clf__estimator, GradientBoostingClassifier(l...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.33
|
||||
bts_precision 0.6
|
||||
bts_recall 0.88
|
||||
bts_accuracy 0.64
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.55
|
||||
|
||||
#######################################################################
|
||||
# GNB: hyperparam
|
||||
{'clf__estimator': GaussianNB(var_smoothing=0.006579332246575682),
|
||||
'clf__estimator__priors': None,
|
||||
'clf__estimator__var_smoothing': 0.006579332246575682}
|
||||
GNB
|
||||
1 [(clf__estimator, GaussianNB(var_smoothing=0.0...
|
||||
bts_fscore 0.72
|
||||
bts_mcc 0.46
|
||||
bts_precision 0.73
|
||||
bts_recall 0.71
|
||||
bts_accuracy 0.73
|
||||
bts_roc_auc 0.73
|
||||
bts_jaccard 0.57
|
||||
#######################################################################
|
||||
# GPC: hyperparam
|
||||
{'clf__estimator': GaussianProcessClassifier(kernel=1**2 * Matern(length_scale=1, nu=1.5),
|
||||
random_state=42),
|
||||
'clf__estimator__kernel': 1**2 * Matern(length_scale=1, nu=1.5)}
|
||||
|
||||
ConvergenceWarning: The optimal value found for dimension 0 of parameter k2__alpha is close to the specified upper bound 100000.0. Increasing the bound and calling fit again may find a better value.
|
||||
warnings.warn(
|
||||
GPC
|
||||
1 [(clf__estimator, GaussianProcessClassifier(ke...
|
||||
bts_fscore 0.73
|
||||
bts_mcc 0.38
|
||||
bts_precision 0.6
|
||||
bts_recall 0.92
|
||||
bts_accuracy 0.66
|
||||
bts_roc_auc 0.66
|
||||
bts_jaccard 0.58
|
||||
#######################################################################
|
||||
# KNN: hyperparam
|
||||
Best model:
|
||||
{'clf__estimator': KNeighborsClassifier(metric='euclidean', n_jobs=10, n_neighbors=11,
|
||||
weights='distance'), 'clf__estimator__metric': 'euclidean', 'clf__estimator__n_neighbors': 11, 'clf__estimator__weights': 'distance'}
|
||||
|
||||
1 [(clf__estimator, KNeighborsClassifier(metric=...
|
||||
bts_fscore 0.69
|
||||
bts_mcc 0.26
|
||||
bts_precision 0.58
|
||||
bts_recall 0.85
|
||||
bts_accuracy 0.62
|
||||
bts_roc_auc 0.62
|
||||
bts_jaccard 0.52
|
||||
|
||||
Best model:
|
||||
{'clf__estimator': KNeighborsClassifier(metric='euclidean', n_jobs=10, n_neighbors=29), 'clf__estimator__metric': 'euclidean', 'clf__estimator__n_neighbors': 29, 'clf__estimator__weights': 'uniform'}
|
||||
|
||||
KNN
|
||||
1 [(clf__estimator, KNeighborsClassifier(metric=...
|
||||
bts_fscore 0.73
|
||||
bts_mcc 0.37
|
||||
bts_precision 0.6
|
||||
bts_recall 0.92
|
||||
bts_accuracy 0.65
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.57
|
||||
|
||||
#######################################################################
|
||||
# MLP: hyperparam
|
||||
#constant lr, tried others as well, but comes back with constant
|
||||
{'clf__estimator': MLPClassifier(hidden_layer_sizes=3, max_iter=500, random_state=42,
|
||||
solver='lbfgs'),
|
||||
'clf__estimator__hidden_layer_sizes': 3,
|
||||
'clf__estimator__learning_rate': 'constant',
|
||||
'clf__estimator__solver': 'lbfgs'}
|
||||
|
||||
|
||||
1 [(clf__estimator, MLPClassifier(hidden_layer_s...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.34
|
||||
bts_precision 0.61
|
||||
bts_recall 0.86
|
||||
bts_accuracy 0.65
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.55
|
||||
|
||||
#######################################################################
|
||||
# QDA: hyperparam
|
||||
Best model:
|
||||
{'clf__estimator': QuadraticDiscriminantAnalysis()}
|
||||
|
||||
QDA
|
||||
1 [(clf__estimator, QuadraticDiscriminantAnalysi...
|
||||
bts_fscore 0.66
|
||||
bts_mcc 0.33
|
||||
bts_precision 0.67
|
||||
bts_recall 0.65
|
||||
bts_accuracy 0.67
|
||||
bts_roc_auc 0.67
|
||||
bts_jaccard 0.49
|
||||
#######################################################################
|
||||
# RC: hyperparam
|
||||
Best model:
|
||||
{'clf__estimator': RidgeClassifier(alpha=0.8, random_state=42)
|
||||
, 'clf__estimator__alpha': 0.8}
|
||||
|
||||
Ridge Classifier
|
||||
1 [(clf__estimator, RidgeClassifier(alpha=0.8, r...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.31
|
||||
bts_precision 0.59
|
||||
bts_recall 0.88
|
||||
bts_accuracy 0.64
|
||||
bts_roc_auc 0.64
|
||||
bts_jaccard 0.55
|
||||
|
||||
#######################################################################
|
||||
# SVC: hyperparam
|
||||
Best model:
|
||||
{'clf__estimator': SVC(C=10, kernel='linear', random_state=42), 'clf__estimator__C': 10, 'clf__estimator__gamma': 'scale', 'clf__estimator__kernel': 'linear'}
|
||||
|
||||
SVC
|
||||
1 [(clf__estimator, SVC(C=10, kernel='linear', r...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.31
|
||||
bts_precision 0.57
|
||||
bts_recall 0.93
|
||||
bts_accuracy 0.62
|
||||
bts_roc_auc 0.62
|
||||
bts_jaccard 0.55
|
||||
|
||||
Best model:
|
||||
{'clf__estimator': SVC(C=10, gamma='auto', random_state=42), 'clf__estimator__C': 10, 'clf__estimator__gamma': 'auto', 'clf__estimator__kernel': 'rbf'}
|
||||
Best models score:
|
||||
SVC
|
||||
1 [(clf__estimator, SVC(C=10, gamma='auto', rand...
|
||||
bts_fscore 0.71
|
||||
bts_mcc 0.32
|
||||
bts_precision 0.58
|
||||
bts_recall 0.93
|
||||
bts_accuracy 0.63
|
||||
bts_roc_auc 0.63
|
||||
bts_jaccard 0.56
|
||||
|
||||
Best model:
|
||||
{'clf__estimator': SVC(C=50, gamma='auto', kernel='sigmoid', random_state=42), 'clf__estimator__C': 50, 'clf__estimator__gamma': 'auto', 'clf__estimator__kernel': 'sigmoid'}
|
||||
|
||||
SVC
|
||||
1 [(clf__estimator, SVC(C=50, gamma='auto', kern...
|
||||
bts_fscore 0.72
|
||||
bts_mcc 0.33
|
||||
bts_precision 0.58
|
||||
bts_recall 0.93
|
||||
bts_accuracy 0.63
|
||||
bts_roc_auc 0.63
|
||||
bts_jaccard 0.56
|
||||
#######################################################################
|
||||
# XGB: hyperparam
|
||||
|
||||
Best model:
|
||||
{'clf__estimator': XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
|
||||
colsample_bynode=None, colsample_bytree=None,
|
||||
enable_categorical=False, gamma=None, gpu_id=None,
|
||||
importance_type=None, interaction_constraints=None,
|
||||
learning_rate=0.01, max_delta_step=None, max_depth=6,
|
||||
max_features='auto', min_child_weight=None, min_samples_leaf=4,
|
||||
missing=nan, monotone_constraints=None, n_estimators=100,
|
||||
n_jobs=10, num_parallel_tree=None, predictor=None,
|
||||
random_state=42, reg_alpha=None, reg_lambda=None,
|
||||
scale_pos_weight=None, subsample=None, tree_method=None,
|
||||
validate_parameters=None, verbosity=None), 'clf__estimator__learning_rate': 0.01, 'clf__estimator__max_depth': 6, 'clf__estimator__max_features': 'auto', 'clf__estimator__min_samples_leaf': 4}
|
||||
|
||||
XGBoost
|
||||
0 best_model_params
|
||||
1 [(clf__estimator, XGBClassifier(base_score=Non...
|
||||
bts_fscore 0.68
|
||||
bts_mcc 0.31
|
||||
bts_precision 0.63
|
||||
bts_recall 0.73
|
||||
bts_accuracy 0.65
|
||||
bts_roc_auc 0.65
|
||||
bts_jaccard 0.51
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue