added UQ_LR FS2.py that has the FS run with LR model as part of pipeline and gridsearch

This commit is contained in:
Tanushree Tunstall 2022-05-21 13:30:45 +01:00
parent 39cd7b4259
commit 52cc16f3fa

182
uq_ml_models/UQ_LR_FS2.py Normal file
View file

@ -0,0 +1,182 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 16 05:59:12 2022
@author: tanu
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
model_lr = LogisticRegression(**rs)
model_rfecv = RFECV(estimator = model_lr
, cv = skf_cv
#, cv = 10
, min_features_to_select = 1 # default
, scoring = 'matthews_corrcoef'
)
param_grid2 = [
{
#'clf__estimator': [LogisticRegression(**rs)],
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'C': np.logspace(0, 4, 10),
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
'max_iter': list(range(100,800,100)),
'solver': ['saga']
},
{
#'clf__estimator': [LogisticRegression(**rs)],
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'C': np.logspace(0, 4, 10),
'penalty': ['l2', 'none'],
'max_iter': list(range(100,800,100)),
'solver': ['newton-cg', 'lbfgs', 'sag']
},
{
#'clf__estimator': [LogisticRegression(**rs)],
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'C': np.logspace(0, 4, 10),
'penalty': ['l1', 'l2'],
'max_iter': list(range(100,800,100)),
'solver': ['liblinear']
}
]
#-------------------------------------------------------------------------------
# Grid search CV + FS
gscv_lr = GridSearchCV(estimator = model_lr
, param_grid = param_grid2
, scoring = mcc_score_fn, refit = 'mcc'
, cv = skf_cv
, return_train_score = False
, verbose = 3
, **njobs)
#------------------------------------------------------------------------------
################
# NOTE: GS is going into pipeline,
# Cannot get BEST model out
################
# Create pipeline
pipeline = Pipeline([('pre', MinMaxScaler())
#, ('fs', sfs_selector)
, ('fs', model_rfecv )
, ('clf', gscv_lr)])
# Fit # dont assign fit
#lr_fs_fit = pipeline.fit(X,y)
pipeline.fit(X,y)
pipeline.best_params_
#https://github.com/scikit-learn/scikit-learn/issues/7536
n_fs = gscv_lr.best_estimator_.n_features_in_
n_fs
sel_features = X.columns[pipeline.named_steps['fs'].get_support()]
print('\nNo. of features selected with RFECV for model'
, pipeline.named_steps['clf'].estimator
, ':', n_fs
, '\nThese are:', sel_features
)
##############################################################
# THIS ONE
#########
# Make Pipeline go into GS with FS
#########
# step 1: specify model
#modLR = LogisticRegression(**rs)
# step 2: specify fs
#model_rfecv = RFECV(estimator = model_lr
# , cv = skf_cv
#, min_features_to_select = 1 # default
#, scoring = 'matthews_corrcoef'
#)
# step 3: specify param grid as dict
param_grid2 = [
{'fs__min_features_to_select': [1]
, 'fs__cv': [skf_cv]
#, 'fs__scoring': ['matthews_corrcoef']},
#, 'fs__scoring': [mcc_score_fn]}
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l2'],
'clf__max_iter': list(range(100,200,100)),
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
'clf__solver': ['sag']
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l1', 'l2'],
'clf__max_iter': list(range(100,200,100)),
'clf__solver': ['liblinear']
}
]
# step 4: create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler())
#, ('fs', model_rfecv)
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
, ('clf', LogisticRegression(**rs))])
# step 5: Perform Gridsearch CV
gs_final = GridSearchCV(pipeline
, param_grid2
, cv = skf_cv
, scoring = mcc_score_fn, refit = 'mcc'
, verbose = 1
, return_train_score = False
, **njobs)
#fit
gs_final.fit(X,y)
gs_final.best_params_
gs_final.best_score_
# assign the fit
gsfit = gs_final.fit(X,y)
#gsfit.best_estimator_
gsfit.best_params_
gsfit.best_score_
# Now get the features out
all_features = gs_final.feature_names_in_
#all_features = gsfit.feature_names_in_
sel_features = X.columns[gs_final.best_estimator_.named_steps['fs'].get_support()]
n_sf = gs_final.best_estimator_.named_steps['fs'].n_features_
# get model name
model_name = gs_final.best_estimator_.named_steps['clf']
b_model_params = gs_final.best_params_
print('\n========================================'
, '\nRunning model:'
, '\nModel name:', model_name
, '\n==============================================='
, '\nRunning feature selection with RFECV for model'
, '\nTotal no. of features in model:', len(all_features)
, '\nThese are:\n', all_features, '\n\n'
, '\nNo of features for best model: ', n_sf
, '\nThese are:', sel_features, '\n\n'
, '\nBest Model hyperparams:', b_model_params
)