made var names more meaniningful

This commit is contained in:
Tanushree Tunstall 2022-03-06 14:49:32 +00:00
parent e2b997badf
commit 6160d943f5
2 changed files with 85 additions and 8 deletions

View file

@ -28,8 +28,8 @@ os.chdir(homedir + "/git/ML_AI_training/")
# my function
from MultClassPipe import MultClassPipeline
#gene = 'pncA'
#drug = 'pyrazinamide'
gene = 'pncA'
drug = 'pyrazinamide'
#==============
# directories
@ -48,10 +48,10 @@ my_df = pd.read_csv(infile_ml1)
my_df.dtypes
my_df_cols = my_df.columns
geneL_basic = ['pnca']
geneL_na = ['gid']
geneL_basic = ['pnca']
geneL_na = ['gid']
geneL_na_ppi2 = ['rpob']
geneL_ppi2 = ['alr', 'embb', 'katg']
geneL_ppi2 = ['alr', 'embb', 'katg']
#%% get cols
mycols = my_df.columns
@ -82,6 +82,17 @@ my_df[drtype_labels] = my_df['drtype'].map({'Sensitive' : 0
# target3 = my_df['drtype']
target3 = my_df[drtype_labels]
# target4
drtype_labels2 = 'drtype_labels2'
my_df[drtype_labels2] = my_df['drtype'].map({'Sensitive' : 0
, 'Other' : 0
, 'Pre-MDR' : 1
, 'MDR' : 1
, 'Pre-XDR' : 2
, 'XDR' : 2})
target4 = my_df[drtype_labels2]
# sanity checks
target1.value_counts()
my_df['mutation_info_labels'].value_counts()
@ -91,6 +102,8 @@ my_df[drug_labels].value_counts()
target3.value_counts()
my_df['drtype'].value_counts()
target4.value_counts()
my_df['drtype'].value_counts()
#%%
# GET X
@ -147,9 +160,30 @@ X_vars6 = my_df[x_stability_cols + X_evolF]
X_vars8 = my_df[X_strF + X_evolF]
#X_vars9 = my_df[X_strF + X_genomicF]
#X_vars10 = my_df[X_evolF + X_genomicF]
X_vars11 = my_df[x_stability_cols + X_strF + X_evolF ]
X_vars11 = my_df[x_stability_cols + X_strF + X_evolF]
#X_vars12 = my_df[x_stability_cols + X_strF + X_evolF + X_genomicF]
numerical_features_names = x_stability_cols + X_strF + X_evolF
# separate ones for foldx?
categorical_features_names = ['ss_class'
, 'wt_prop_water'
# , 'lineage_labels' # misleading if using merged_df3
, 'mut_prop_water'
, 'wt_prop_polarity'
, 'mut_prop_polarity'
, 'wt_calcprop'
, 'mut_calcprop'
, 'active_aa_pos']
numerical_features_df = my_df[numerical_features_names]
numerical_features_df.shape
categorical_features_df = my_df[categorical_features_names]
categorical_features_df.shape
all_features_df = my_df[numerical_features_names + categorical_features_names]
all_features_df.shape
#%%
X_vars1.shape[1]
X_vars5.shape[1]