trying feature selection for classification logistic algorithm on 3 types of target
This commit is contained in:
parent
ec2d5ca25b
commit
e2b997badf
1 changed files with 164 additions and 0 deletions
164
my_data7.py
Normal file
164
my_data7.py
Normal file
|
@ -0,0 +1,164 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Mar 5 12:57:32 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
|
||||
#%%
|
||||
model= Pipeline(steps = [
|
||||
('pre', MinMaxScaler()),
|
||||
('reg', LogisticRegression(class_weight = 'balanced'))])
|
||||
|
||||
def precision(y_true,y_pred):
|
||||
return precision_score(y_true,y_pred,pos_label = 1)
|
||||
def recall(y_true,y_pred):
|
||||
return recall_score(y_true, y_pred, pos_label = 1)
|
||||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
acc = make_scorer(accuracy_score)
|
||||
prec = make_scorer(precision)
|
||||
rec = make_scorer(recall)
|
||||
f1 = make_scorer(f1)
|
||||
|
||||
output = cross_validate(model, X_train, y_train
|
||||
, scoring = {'acc' : acc
|
||||
,'prec': prec
|
||||
,'rec' : rec
|
||||
,'f1' : f1}
|
||||
, cv = 10
|
||||
, return_train_score = False)
|
||||
pd.DataFrame(output).mean()
|
||||
|
||||
#%%
|
||||
# classification_repor: lowest scores but does it give numbers for all your classes!
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
|
||||
f1_score(y_test, y_pred)
|
||||
roc_auc_score (y_test, y_pred) # not sure!
|
||||
#roc_curve(y_test, y_pred)
|
||||
classification_report(y_test, y_pred)
|
||||
target_names = {1:'Resistant', 0:'Sensitive'}
|
||||
print(classification_report(y_test
|
||||
, y_pred
|
||||
#, target_names=y_test.map(target_names)
|
||||
))
|
||||
#%%NOT SURE!
|
||||
from itertools import combinations
|
||||
def train(X):
|
||||
return cross_validate(model, X, y_train
|
||||
#, scoring = make_scorer(accuracy_score)
|
||||
, scoring = {'acc' : acc
|
||||
,'prec' : prec
|
||||
,'rec' : rec
|
||||
,'f1' : f1}
|
||||
, cv = 10
|
||||
, return_train_score = False)
|
||||
#, return_estimator = True)['test_score']
|
||||
|
||||
scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns, len(X_train.columns))]
|
||||
means = [score.mean() for score in scores]
|
||||
means
|
||||
#%%
|
||||
# TO TRY
|
||||
https://rasbt.github.io/mlxtend/
|
||||
|
||||
# stackoverflow
|
||||
# informative post
|
||||
https://datascience.stackexchange.com/questions/937/does-scikit-learn-have-a-forward-selection-stepwise-regression-algorithm
|
||||
https://datascience.stackexchange.com/questions/24405/how-to-do-stepwise-regression-using-sklearn/24447#24447
|
||||
https://stats.stackexchange.com/questions/204141/difference-between-selecting-features-based-on-f-regression-and-based-on-r2
|
||||
|
||||
|
||||
# 0.24 version, it supports
|
||||
https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_24_0.html#new-sequentialfeatureselector-transformer
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
|
||||
https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html
|
||||
#%% RFE: Feature selection in classification
|
||||
# others in example
|
||||
# https://towardsdatascience.com/feature-selection-techniques-for-classification-and-python-tips-for-their-application-10c0ddd7918b
|
||||
# https://towardsdatascience.com/feature-selection-using-python-for-classification-problem-b5f00a1c7028
|
||||
|
||||
model_logistic = LogisticRegression(solver='lbfgs'
|
||||
, multi_class = 'multinomial'
|
||||
, max_iter = 1000)
|
||||
model_logistic = LogisticRegression()
|
||||
|
||||
sel_rfe_logistic = RFE(estimator = model_logistic
|
||||
, n_features_to_select = 4
|
||||
, step = 1)
|
||||
|
||||
X_train_rfe_logistic = sel_rfe_logistic.fit_transform(X_train, y_train)
|
||||
print(sel_rfe_logistic.get_support())
|
||||
|
||||
print(sel_rfe_logistic.ranking_)
|
||||
#%% RFECV
|
||||
# https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
|
||||
|
||||
target = target1
|
||||
target = target3
|
||||
target = target4
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_vars1,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_vars2,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_vars3,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_vars5,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_vars11,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
model_logistic = LogisticRegression()
|
||||
sel_rfe_logistic = RFECV(estimator = model_logistic
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
|
||||
X_train_rfe_logistic = sel_rfe_logistic.fit_transform(X_train, y_train)
|
||||
print(sel_rfe_logistic.get_support())
|
||||
X_train.columns
|
||||
|
||||
print(sel_rfe_logistic.ranking_)
|
Loading…
Add table
Add a link
Reference in a new issue