finally made the fs work within class and without
This commit is contained in:
parent
4a9e9dfedf
commit
39cd7b4259
3 changed files with 95 additions and 110 deletions
|
@ -25,6 +25,7 @@ X_eg, y_eg = make_classification(n_samples=1000,
|
|||
|
||||
pipe = Pipeline([('scaler', StandardScaler()),
|
||||
('selector', SelectKBest(mutual_info_classif, k=9)),
|
||||
|
||||
('classifier', LogisticRegression())])
|
||||
|
||||
search_space = [{'selector__k': [5, 6, 7, 10]},
|
||||
|
|
107
UQ_LR_FS_p2.py
107
UQ_LR_FS_p2.py
|
@ -21,18 +21,25 @@ class ClfSwitcher(BaseEstimator):
|
|||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
#feature = RFECV()
|
||||
#feature = RFECV(SGDClassifier())
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
#self.feature = feature
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
#self.feature.fit(X, y)
|
||||
return self
|
||||
|
||||
# def transform(self, X, y=None):
|
||||
# #self.estimator.transform(X, y)
|
||||
# self.feature.transform(X)
|
||||
# return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
|
@ -42,23 +49,26 @@ class ClfSwitcher(BaseEstimator):
|
|||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
#%%
|
||||
parameters = [
|
||||
# {'feature__fs__estimator': LogisticRegression(**rs)
|
||||
# , 'feature__fs__cv': [10]
|
||||
# , 'feature__fs__scoring': ['matthews_corrcoef']
|
||||
# },
|
||||
|
||||
# {'fs__feature__min_features_to_select': [1]
|
||||
# , 'fs__feature__scoring': ['matthews_corrcoef']
|
||||
# , 'fs__feature__cv': [skf_cv]},
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
#, 'fs__scoring': ['matthews_corrcoef']
|
||||
, 'fs__cv': [skf_cv]},
|
||||
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
}#,
|
||||
# {
|
||||
# 'clf__estimator': [MODEL2(**rs)],
|
||||
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
# 'clf__estimator__penalty': ['l2', 'none'],
|
||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
|
@ -68,13 +78,14 @@ parameters = [
|
|||
#%% Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
# , ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
||||
, ('selector', SelectKBest(mutual_info_classif, k=6))
|
||||
, ('clf', ClfSwitcher())
|
||||
])
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
||||
# , ('fs', ClfSwitcher())
|
||||
, ('clf', ClfSwitcher())
|
||||
])
|
||||
|
||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
mod_fs = GridSearchCV(pipeline
|
||||
#%%
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_lr = GridSearchCV(pipeline
|
||||
, parameters
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
|
@ -82,6 +93,66 @@ mod_fs = GridSearchCV(pipeline
|
|||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_lr.fit(X, y)
|
||||
|
||||
####
|
||||
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||
|
||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
|
||||
param_grid2 = [
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
, 'fs__cv': [skf_cv]
|
||||
},
|
||||
|
||||
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
'clf__solver': ['sag']
|
||||
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
# step 4: create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
#, ('fs', model_rfecv)
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
|
||||
, ('clf', LogisticRegression(**rs))])
|
||||
|
||||
# step 5: Perform Gridsearch CV
|
||||
gs_final = GridSearchCV(pipeline
|
||||
, param_grid2
|
||||
, cv = skf_cv
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, verbose = 1
|
||||
, return_train_score = False
|
||||
, **njobs)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%% Fit
|
||||
mod_fs_fit = mod_fs.fit(X, y)
|
||||
mod_fs_fbm = mod_fs_fit.best_params_
|
||||
|
|
|
@ -12,85 +12,6 @@ Created on Tue Mar 15 11:09:50 2022
|
|||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Import libs
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
#%% Get data
|
||||
y.to_frame().value_counts().plot(kind = 'bar')
|
||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||
|
||||
# %% Logistic Regression + FS + hyperparameter
|
||||
# https://www.tomasbeuzen.com/post/scikit-learn-gridsearch-pipelines/
|
||||
# from sklearn.feature_selection import SelectKBest, mutual_info_classif
|
||||
|
||||
# # Create pipeline
|
||||
# pipe = Pipeline([
|
||||
# ('pre', MinMaxScaler())
|
||||
# , ('fs', RFECV( LogisticRegression(**rs), cv = skf_cv, scoring = 'matthews_corrcoef', **njobs,verbose = 3))
|
||||
# #, ('fs', SelectKBest(mutual_info_classif, k=5))
|
||||
# , ('clf', LogisticRegression(**rs))
|
||||
# ])
|
||||
|
||||
# # Create search space
|
||||
# param_grid = [{'fs__step': [1]},
|
||||
|
||||
# {
|
||||
# 'clf': [LogisticRegression(**rs)],
|
||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['saga']
|
||||
# },
|
||||
# {
|
||||
# 'clf': [LogisticRegression(**rs)],
|
||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l2', 'none'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
# },
|
||||
# {
|
||||
# 'clf': [LogisticRegression(**rs)],
|
||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'clf__C': np.logspace(0, 4, 10),
|
||||
# 'clf__penalty': ['l1', 'l2'],
|
||||
# 'clf__max_iter': list(range(100,800,100)),
|
||||
# 'clf__solver': ['liblinear']
|
||||
# }]
|
||||
|
||||
# # Run Grid search
|
||||
# gscv_fs_lr = GridSearchCV(pipe
|
||||
# , param_grid
|
||||
# , cv = skf_cv
|
||||
# , scoring = mcc_score_fn, refit = 'mcc'
|
||||
# , verbose = 3)
|
||||
|
||||
# gscv_fs_lr_fit = gscv_fs_lr.fit(X, y)
|
||||
# gscv_fs_lr_fit_be_mod = gscv_fs_lr_fit.best_params_
|
||||
# gscv_fs_lr_fit_be_res = gscv_fs_lr_fit.cv_results_
|
||||
|
||||
# print('Best model:\n', gscv_fs_lr_fit_be_mod)
|
||||
# print('Best models score:\n', gscv_fs_lr_fit.best_score_, ':' , round(gscv_fs_lr_fit.best_score_, 2))
|
||||
|
||||
# #print('\nMean test score from fit results:', round(mean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
|
||||
# print('\nMean test score from fit results:', round(np.nanmean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
##############################################################################
|
||||
#MANUAL
|
||||
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
model_lr = LogisticRegression(**rs)
|
||||
model_rfecv = RFECV(estimator = model_lr
|
||||
|
@ -99,15 +20,6 @@ model_rfecv = RFECV(estimator = model_lr
|
|||
, scoring = 'matthews_corrcoef'
|
||||
)
|
||||
|
||||
# model_rfecv = SequentialFeatureSelector(estimator = model_lr
|
||||
# , n_features_to_select = 'auto'
|
||||
# , tol = None
|
||||
# # , cv = 10
|
||||
# , cv = rskf_cv
|
||||
# # , direction ='backward'
|
||||
# , direction ='forward'
|
||||
# , **njobs)
|
||||
|
||||
param_grid2 = [
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
|
@ -155,14 +67,15 @@ pipeline = Pipeline([('pre', MinMaxScaler())
|
|||
|
||||
# Fit
|
||||
lr_fs_fit = pipeline.fit(X,y)
|
||||
lr_fs_fit_be_mod = lr_fs_fit.best_params_
|
||||
lr_fs_fit_be_res = lr_fs_fit.cv_results_
|
||||
#lr_fs_fit_be_mod = lr_fs_fit.best_params_
|
||||
#lr_fs_fit_be_res = lr_fs_fit.cv_results_
|
||||
dir(lr_fs_fit)
|
||||
|
||||
print('Best model:\n', lr_fs_fit_be_mod)
|
||||
print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2))
|
||||
|
||||
pipeline.predict(X_bts)
|
||||
lr_fs.predict(X_bts)
|
||||
lr_fs_fit.predict(X_bts)
|
||||
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
print(test_predict)
|
||||
|
@ -238,4 +151,4 @@ lr_df
|
|||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
###############################################################################
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue