ML_AI_training/UQ_LR_FS_p2.py

175 lines
4.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 16 05:59:12 2022
@author: tanu
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
#%% Import libraries, data, and scoring func: UQ_pnca_ML.py
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
class ClfSwitcher(BaseEstimator):
def __init__(
self,
estimator = SGDClassifier(),
#feature = RFECV(SGDClassifier())
):
"""
A Custom BaseEstimator that can switch between classifiers.
:param estimator: sklearn object - The classifier
"""
self.estimator = estimator
#self.feature = feature
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
#self.feature.fit(X, y)
return self
# def transform(self, X, y=None):
# #self.estimator.transform(X, y)
# self.feature.transform(X)
# return self
def predict(self, X, y=None):
return self.estimator.predict(X)
def predict_proba(self, X):
return self.estimator.predict_proba(X)
def score(self, X, y):
return self.estimator.score(X, y)
#%%
parameters = [
# {'fs__feature__min_features_to_select': [1]
# , 'fs__feature__scoring': ['matthews_corrcoef']
# , 'fs__feature__cv': [skf_cv]},
{'fs__min_features_to_select': [1]
#, 'fs__scoring': ['matthews_corrcoef']
, 'fs__cv': [skf_cv]},
{
'clf__estimator': [LogisticRegression(**rs)],
#'clf__estimator__C': np.logspace(0, 4, 10),
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
'clf__estimator__max_iter': list(range(100,800,100)),
'clf__estimator__solver': ['saga']
}#,
# {
# 'clf__estimator': [MODEL2(**rs)],
# 'clf__estimator__C': np.logspace(0, 4, 10),
# 'clf__estimator__penalty': ['l2', 'none'],
# 'clf__estimator__max_iter': list(range(100,800,100)),
# 'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
# },
]
#%% Create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler())
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
# , ('fs', ClfSwitcher())
, ('clf', ClfSwitcher())
])
#%%
# Grid search i.e hyperparameter tuning and refitting on mcc
gscv_lr = GridSearchCV(pipeline
, parameters
, scoring = mcc_score_fn, refit = 'mcc'
, cv = skf_cv
, **njobs
, return_train_score = False
, verbose = 3)
# Fit
gscv_lr.fit(X, y)
####
gscv_lr_fit = gscv_lr.fit(X, y)
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
#%% Grid search i.e hyperparameter tuning and refitting on mcc
param_grid2 = [
{'fs__min_features_to_select': [1]
, 'fs__cv': [skf_cv]
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l2'],
'clf__max_iter': list(range(100,200,100)),
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
'clf__solver': ['sag']
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l1', 'l2'],
'clf__max_iter': list(range(100,200,100)),
'clf__solver': ['liblinear']
}
]
# step 4: create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler())
#, ('fs', model_rfecv)
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
, ('clf', LogisticRegression(**rs))])
# step 5: Perform Gridsearch CV
gs_final = GridSearchCV(pipeline
, param_grid2
, cv = skf_cv
, scoring = mcc_score_fn, refit = 'mcc'
, verbose = 1
, return_train_score = False
, **njobs)
#%% Fit
mod_fs_fit = mod_fs.fit(X, y)
mod_fs_fbm = mod_fs_fit.best_params_
mod_fs_fbmr = mod_fs_fit.cv_results_
mod_fs_fbs = mod_fs_fit.best_score_
print('Best model:\n', mod_fs_fbm)
print('Best models score:\n', mod_fs_fbs, ':' , round(mod_fs_fbs, 2))
#print('\nMean test score from fit results:', round(mean(mod_fs_fbmr['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(np.nanmean(mod_fs_fbmr['mean_test_mcc']),2))
###############################################################################
#%% Blind test
######################################
# Blind test
######################################
test_predict = mod_fs_fit.predict(X_bts)
print(test_predict)
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))