finally made the fs work within class and without

This commit is contained in:
Tanushree Tunstall 2022-05-21 13:30:04 +01:00
parent 4a9e9dfedf
commit 39cd7b4259
3 changed files with 95 additions and 110 deletions

View file

@ -25,6 +25,7 @@ X_eg, y_eg = make_classification(n_samples=1000,
pipe = Pipeline([('scaler', StandardScaler()), pipe = Pipeline([('scaler', StandardScaler()),
('selector', SelectKBest(mutual_info_classif, k=9)), ('selector', SelectKBest(mutual_info_classif, k=9)),
('classifier', LogisticRegression())]) ('classifier', LogisticRegression())])
search_space = [{'selector__k': [5, 6, 7, 10]}, search_space = [{'selector__k': [5, 6, 7, 10]},

View file

@ -21,18 +21,25 @@ class ClfSwitcher(BaseEstimator):
def __init__( def __init__(
self, self,
estimator = SGDClassifier(), estimator = SGDClassifier(),
#feature = RFECV() #feature = RFECV(SGDClassifier())
): ):
""" """
A Custom BaseEstimator that can switch between classifiers. A Custom BaseEstimator that can switch between classifiers.
:param estimator: sklearn object - The classifier :param estimator: sklearn object - The classifier
""" """
self.estimator = estimator self.estimator = estimator
#self.feature = feature
def fit(self, X, y=None, **kwargs): def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y) self.estimator.fit(X, y)
#self.feature.fit(X, y)
return self return self
# def transform(self, X, y=None):
# #self.estimator.transform(X, y)
# self.feature.transform(X)
# return self
def predict(self, X, y=None): def predict(self, X, y=None):
return self.estimator.predict(X) return self.estimator.predict(X)
@ -42,23 +49,26 @@ class ClfSwitcher(BaseEstimator):
def score(self, X, y): def score(self, X, y):
return self.estimator.score(X, y) return self.estimator.score(X, y)
#%%
parameters = [ parameters = [
# {'feature__fs__estimator': LogisticRegression(**rs)
# , 'feature__fs__cv': [10] # {'fs__feature__min_features_to_select': [1]
# , 'feature__fs__scoring': ['matthews_corrcoef'] # , 'fs__feature__scoring': ['matthews_corrcoef']
# }, # , 'fs__feature__cv': [skf_cv]},
{'fs__min_features_to_select': [1]
#, 'fs__scoring': ['matthews_corrcoef']
, 'fs__cv': [skf_cv]},
{ {
'clf__estimator': [LogisticRegression(**rs)], 'clf__estimator': [LogisticRegression(**rs)],
'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], #'clf__estimator__C': np.logspace(0, 4, 10),
#'clf__estimator__C': np.logspace(0, 4, 10), 'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'], 'clf__estimator__max_iter': list(range(100,800,100)),
'clf__estimator__max_iter': list(range(100,800,100)), 'clf__estimator__solver': ['saga']
'clf__estimator__solver': ['saga']
}#, }#,
# { # {
# 'clf__estimator': [MODEL2(**rs)], # 'clf__estimator': [MODEL2(**rs)],
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
# 'clf__estimator__C': np.logspace(0, 4, 10), # 'clf__estimator__C': np.logspace(0, 4, 10),
# 'clf__estimator__penalty': ['l2', 'none'], # 'clf__estimator__penalty': ['l2', 'none'],
# 'clf__estimator__max_iter': list(range(100,800,100)), # 'clf__estimator__max_iter': list(range(100,800,100)),
@ -68,13 +78,14 @@ parameters = [
#%% Create pipeline #%% Create pipeline
pipeline = Pipeline([ pipeline = Pipeline([
('pre', MinMaxScaler()) ('pre', MinMaxScaler())
# , ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef')) , ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
, ('selector', SelectKBest(mutual_info_classif, k=6)) # , ('fs', ClfSwitcher())
, ('clf', ClfSwitcher()) , ('clf', ClfSwitcher())
]) ])
#%% Grid search i.e hyperparameter tuning and refitting on mcc #%%
mod_fs = GridSearchCV(pipeline # Grid search i.e hyperparameter tuning and refitting on mcc
gscv_lr = GridSearchCV(pipeline
, parameters , parameters
, scoring = mcc_score_fn, refit = 'mcc' , scoring = mcc_score_fn, refit = 'mcc'
, cv = skf_cv , cv = skf_cv
@ -82,6 +93,66 @@ mod_fs = GridSearchCV(pipeline
, return_train_score = False , return_train_score = False
, verbose = 3) , verbose = 3)
# Fit
gscv_lr.fit(X, y)
####
gscv_lr_fit = gscv_lr.fit(X, y)
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
#%% Grid search i.e hyperparameter tuning and refitting on mcc
param_grid2 = [
{'fs__min_features_to_select': [1]
, 'fs__cv': [skf_cv]
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l2'],
'clf__max_iter': list(range(100,200,100)),
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
'clf__solver': ['sag']
},
{
#'clf__estimator': [LogisticRegression(**rs)],
'clf__C': np.logspace(0, 4, 10),
'clf__penalty': ['l1', 'l2'],
'clf__max_iter': list(range(100,200,100)),
'clf__solver': ['liblinear']
}
]
# step 4: create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler())
#, ('fs', model_rfecv)
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
, ('clf', LogisticRegression(**rs))])
# step 5: Perform Gridsearch CV
gs_final = GridSearchCV(pipeline
, param_grid2
, cv = skf_cv
, scoring = mcc_score_fn, refit = 'mcc'
, verbose = 1
, return_train_score = False
, **njobs)
#%% Fit #%% Fit
mod_fs_fit = mod_fs.fit(X, y) mod_fs_fit = mod_fs.fit(X, y)
mod_fs_fbm = mod_fs_fit.best_params_ mod_fs_fbm = mod_fs_fit.best_params_

View file

@ -12,85 +12,6 @@ Created on Tue Mar 15 11:09:50 2022
@author: tanu @author: tanu
""" """
#%% Import libs
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score)
, 'mcc' : make_scorer(matthews_corrcoef)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jaccard' : make_scorer(jaccard_score)
})
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% Get data
y.to_frame().value_counts().plot(kind = 'bar')
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
# %% Logistic Regression + FS + hyperparameter
# https://www.tomasbeuzen.com/post/scikit-learn-gridsearch-pipelines/
# from sklearn.feature_selection import SelectKBest, mutual_info_classif
# # Create pipeline
# pipe = Pipeline([
# ('pre', MinMaxScaler())
# , ('fs', RFECV( LogisticRegression(**rs), cv = skf_cv, scoring = 'matthews_corrcoef', **njobs,verbose = 3))
# #, ('fs', SelectKBest(mutual_info_classif, k=5))
# , ('clf', LogisticRegression(**rs))
# ])
# # Create search space
# param_grid = [{'fs__step': [1]},
# {
# 'clf': [LogisticRegression(**rs)],
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
# 'clf__C': np.logspace(0, 4, 10),
# 'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
# 'clf__max_iter': list(range(100,800,100)),
# 'clf__solver': ['saga']
# },
# {
# 'clf': [LogisticRegression(**rs)],
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
# 'clf__C': np.logspace(0, 4, 10),
# 'clf__penalty': ['l2', 'none'],
# 'clf__max_iter': list(range(100,800,100)),
# 'clf__solver': ['newton-cg', 'lbfgs', 'sag']
# },
# {
# 'clf': [LogisticRegression(**rs)],
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
# 'clf__C': np.logspace(0, 4, 10),
# 'clf__penalty': ['l1', 'l2'],
# 'clf__max_iter': list(range(100,800,100)),
# 'clf__solver': ['liblinear']
# }]
# # Run Grid search
# gscv_fs_lr = GridSearchCV(pipe
# , param_grid
# , cv = skf_cv
# , scoring = mcc_score_fn, refit = 'mcc'
# , verbose = 3)
# gscv_fs_lr_fit = gscv_fs_lr.fit(X, y)
# gscv_fs_lr_fit_be_mod = gscv_fs_lr_fit.best_params_
# gscv_fs_lr_fit_be_res = gscv_fs_lr_fit.cv_results_
# print('Best model:\n', gscv_fs_lr_fit_be_mod)
# print('Best models score:\n', gscv_fs_lr_fit.best_score_, ':' , round(gscv_fs_lr_fit.best_score_, 2))
# #print('\nMean test score from fit results:', round(mean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
# print('\nMean test score from fit results:', round(np.nanmean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
##############################################################################
#MANUAL
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher() #%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
model_lr = LogisticRegression(**rs) model_lr = LogisticRegression(**rs)
model_rfecv = RFECV(estimator = model_lr model_rfecv = RFECV(estimator = model_lr
@ -99,15 +20,6 @@ model_rfecv = RFECV(estimator = model_lr
, scoring = 'matthews_corrcoef' , scoring = 'matthews_corrcoef'
) )
# model_rfecv = SequentialFeatureSelector(estimator = model_lr
# , n_features_to_select = 'auto'
# , tol = None
# # , cv = 10
# , cv = rskf_cv
# # , direction ='backward'
# , direction ='forward'
# , **njobs)
param_grid2 = [ param_grid2 = [
{ {
#'clf__estimator': [LogisticRegression(**rs)], #'clf__estimator': [LogisticRegression(**rs)],
@ -155,14 +67,15 @@ pipeline = Pipeline([('pre', MinMaxScaler())
# Fit # Fit
lr_fs_fit = pipeline.fit(X,y) lr_fs_fit = pipeline.fit(X,y)
lr_fs_fit_be_mod = lr_fs_fit.best_params_ #lr_fs_fit_be_mod = lr_fs_fit.best_params_
lr_fs_fit_be_res = lr_fs_fit.cv_results_ #lr_fs_fit_be_res = lr_fs_fit.cv_results_
dir(lr_fs_fit)
print('Best model:\n', lr_fs_fit_be_mod) print('Best model:\n', lr_fs_fit_be_mod)
print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2)) print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2))
pipeline.predict(X_bts) pipeline.predict(X_bts)
lr_fs.predict(X_bts) lr_fs_fit.predict(X_bts)
test_predict = pipeline.predict(X_bts) test_predict = pipeline.predict(X_bts)
print(test_predict) print(test_predict)
@ -238,4 +151,4 @@ lr_df
#FIXME: tidy the index of the formatted df #FIXME: tidy the index of the formatted df
############################################################################### ###############################################################################