finally made the fs work within class and without
This commit is contained in:
parent
4a9e9dfedf
commit
39cd7b4259
3 changed files with 95 additions and 110 deletions
|
@ -25,6 +25,7 @@ X_eg, y_eg = make_classification(n_samples=1000,
|
||||||
|
|
||||||
pipe = Pipeline([('scaler', StandardScaler()),
|
pipe = Pipeline([('scaler', StandardScaler()),
|
||||||
('selector', SelectKBest(mutual_info_classif, k=9)),
|
('selector', SelectKBest(mutual_info_classif, k=9)),
|
||||||
|
|
||||||
('classifier', LogisticRegression())])
|
('classifier', LogisticRegression())])
|
||||||
|
|
||||||
search_space = [{'selector__k': [5, 6, 7, 10]},
|
search_space = [{'selector__k': [5, 6, 7, 10]},
|
||||||
|
|
107
UQ_LR_FS_p2.py
107
UQ_LR_FS_p2.py
|
@ -21,18 +21,25 @@ class ClfSwitcher(BaseEstimator):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
estimator = SGDClassifier(),
|
estimator = SGDClassifier(),
|
||||||
#feature = RFECV()
|
#feature = RFECV(SGDClassifier())
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
A Custom BaseEstimator that can switch between classifiers.
|
||||||
:param estimator: sklearn object - The classifier
|
:param estimator: sklearn object - The classifier
|
||||||
"""
|
"""
|
||||||
self.estimator = estimator
|
self.estimator = estimator
|
||||||
|
#self.feature = feature
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
def fit(self, X, y=None, **kwargs):
|
||||||
self.estimator.fit(X, y)
|
self.estimator.fit(X, y)
|
||||||
|
#self.feature.fit(X, y)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
# def transform(self, X, y=None):
|
||||||
|
# #self.estimator.transform(X, y)
|
||||||
|
# self.feature.transform(X)
|
||||||
|
# return self
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
def predict(self, X, y=None):
|
||||||
return self.estimator.predict(X)
|
return self.estimator.predict(X)
|
||||||
|
|
||||||
|
@ -42,23 +49,26 @@ class ClfSwitcher(BaseEstimator):
|
||||||
def score(self, X, y):
|
def score(self, X, y):
|
||||||
return self.estimator.score(X, y)
|
return self.estimator.score(X, y)
|
||||||
|
|
||||||
|
#%%
|
||||||
parameters = [
|
parameters = [
|
||||||
# {'feature__fs__estimator': LogisticRegression(**rs)
|
|
||||||
# , 'feature__fs__cv': [10]
|
# {'fs__feature__min_features_to_select': [1]
|
||||||
# , 'feature__fs__scoring': ['matthews_corrcoef']
|
# , 'fs__feature__scoring': ['matthews_corrcoef']
|
||||||
# },
|
# , 'fs__feature__cv': [skf_cv]},
|
||||||
|
|
||||||
|
{'fs__min_features_to_select': [1]
|
||||||
|
#, 'fs__scoring': ['matthews_corrcoef']
|
||||||
|
, 'fs__cv': [skf_cv]},
|
||||||
|
|
||||||
{
|
{
|
||||||
'clf__estimator': [LogisticRegression(**rs)],
|
'clf__estimator': [LogisticRegression(**rs)],
|
||||||
'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
'clf__estimator__solver': ['saga']
|
||||||
'clf__estimator__solver': ['saga']
|
|
||||||
}#,
|
}#,
|
||||||
# {
|
# {
|
||||||
# 'clf__estimator': [MODEL2(**rs)],
|
# 'clf__estimator': [MODEL2(**rs)],
|
||||||
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
|
||||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||||
# 'clf__estimator__penalty': ['l2', 'none'],
|
# 'clf__estimator__penalty': ['l2', 'none'],
|
||||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||||
|
@ -68,13 +78,14 @@ parameters = [
|
||||||
#%% Create pipeline
|
#%% Create pipeline
|
||||||
pipeline = Pipeline([
|
pipeline = Pipeline([
|
||||||
('pre', MinMaxScaler())
|
('pre', MinMaxScaler())
|
||||||
# , ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
||||||
, ('selector', SelectKBest(mutual_info_classif, k=6))
|
# , ('fs', ClfSwitcher())
|
||||||
, ('clf', ClfSwitcher())
|
, ('clf', ClfSwitcher())
|
||||||
])
|
])
|
||||||
|
|
||||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
#%%
|
||||||
mod_fs = GridSearchCV(pipeline
|
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||||
|
gscv_lr = GridSearchCV(pipeline
|
||||||
, parameters
|
, parameters
|
||||||
, scoring = mcc_score_fn, refit = 'mcc'
|
, scoring = mcc_score_fn, refit = 'mcc'
|
||||||
, cv = skf_cv
|
, cv = skf_cv
|
||||||
|
@ -82,6 +93,66 @@ mod_fs = GridSearchCV(pipeline
|
||||||
, return_train_score = False
|
, return_train_score = False
|
||||||
, verbose = 3)
|
, verbose = 3)
|
||||||
|
|
||||||
|
# Fit
|
||||||
|
gscv_lr.fit(X, y)
|
||||||
|
|
||||||
|
####
|
||||||
|
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||||
|
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||||
|
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||||
|
|
||||||
|
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||||
|
|
||||||
|
param_grid2 = [
|
||||||
|
|
||||||
|
{'fs__min_features_to_select': [1]
|
||||||
|
, 'fs__cv': [skf_cv]
|
||||||
|
},
|
||||||
|
|
||||||
|
|
||||||
|
{
|
||||||
|
#'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
'clf__C': np.logspace(0, 4, 10),
|
||||||
|
'clf__penalty': ['l2'],
|
||||||
|
'clf__max_iter': list(range(100,200,100)),
|
||||||
|
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||||
|
'clf__solver': ['sag']
|
||||||
|
|
||||||
|
},
|
||||||
|
{
|
||||||
|
#'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
'clf__C': np.logspace(0, 4, 10),
|
||||||
|
'clf__penalty': ['l1', 'l2'],
|
||||||
|
'clf__max_iter': list(range(100,200,100)),
|
||||||
|
'clf__solver': ['liblinear']
|
||||||
|
}
|
||||||
|
|
||||||
|
]
|
||||||
|
# step 4: create pipeline
|
||||||
|
pipeline = Pipeline([
|
||||||
|
('pre', MinMaxScaler())
|
||||||
|
#, ('fs', model_rfecv)
|
||||||
|
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
|
||||||
|
, ('clf', LogisticRegression(**rs))])
|
||||||
|
|
||||||
|
# step 5: Perform Gridsearch CV
|
||||||
|
gs_final = GridSearchCV(pipeline
|
||||||
|
, param_grid2
|
||||||
|
, cv = skf_cv
|
||||||
|
, scoring = mcc_score_fn, refit = 'mcc'
|
||||||
|
, verbose = 1
|
||||||
|
, return_train_score = False
|
||||||
|
, **njobs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%% Fit
|
#%% Fit
|
||||||
mod_fs_fit = mod_fs.fit(X, y)
|
mod_fs_fit = mod_fs.fit(X, y)
|
||||||
mod_fs_fbm = mod_fs_fit.best_params_
|
mod_fs_fbm = mod_fs_fit.best_params_
|
||||||
|
|
|
@ -12,85 +12,6 @@ Created on Tue Mar 15 11:09:50 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% Import libs
|
|
||||||
rs = {'random_state': 42}
|
|
||||||
njobs = {'n_jobs': 10}
|
|
||||||
|
|
||||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
|
||||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
|
||||||
, 'precision' : make_scorer(precision_score)
|
|
||||||
, 'recall' : make_scorer(recall_score)
|
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
||||||
, 'jaccard' : make_scorer(jaccard_score)
|
|
||||||
})
|
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|
||||||
#%% Get data
|
|
||||||
y.to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
|
|
||||||
# %% Logistic Regression + FS + hyperparameter
|
|
||||||
# https://www.tomasbeuzen.com/post/scikit-learn-gridsearch-pipelines/
|
|
||||||
# from sklearn.feature_selection import SelectKBest, mutual_info_classif
|
|
||||||
|
|
||||||
# # Create pipeline
|
|
||||||
# pipe = Pipeline([
|
|
||||||
# ('pre', MinMaxScaler())
|
|
||||||
# , ('fs', RFECV( LogisticRegression(**rs), cv = skf_cv, scoring = 'matthews_corrcoef', **njobs,verbose = 3))
|
|
||||||
# #, ('fs', SelectKBest(mutual_info_classif, k=5))
|
|
||||||
# , ('clf', LogisticRegression(**rs))
|
|
||||||
# ])
|
|
||||||
|
|
||||||
# # Create search space
|
|
||||||
# param_grid = [{'fs__step': [1]},
|
|
||||||
|
|
||||||
# {
|
|
||||||
# 'clf': [LogisticRegression(**rs)],
|
|
||||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
|
||||||
# 'clf__C': np.logspace(0, 4, 10),
|
|
||||||
# 'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
|
||||||
# 'clf__max_iter': list(range(100,800,100)),
|
|
||||||
# 'clf__solver': ['saga']
|
|
||||||
# },
|
|
||||||
# {
|
|
||||||
# 'clf': [LogisticRegression(**rs)],
|
|
||||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
|
||||||
# 'clf__C': np.logspace(0, 4, 10),
|
|
||||||
# 'clf__penalty': ['l2', 'none'],
|
|
||||||
# 'clf__max_iter': list(range(100,800,100)),
|
|
||||||
# 'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
|
||||||
# },
|
|
||||||
# {
|
|
||||||
# 'clf': [LogisticRegression(**rs)],
|
|
||||||
# #'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
|
||||||
# 'clf__C': np.logspace(0, 4, 10),
|
|
||||||
# 'clf__penalty': ['l1', 'l2'],
|
|
||||||
# 'clf__max_iter': list(range(100,800,100)),
|
|
||||||
# 'clf__solver': ['liblinear']
|
|
||||||
# }]
|
|
||||||
|
|
||||||
# # Run Grid search
|
|
||||||
# gscv_fs_lr = GridSearchCV(pipe
|
|
||||||
# , param_grid
|
|
||||||
# , cv = skf_cv
|
|
||||||
# , scoring = mcc_score_fn, refit = 'mcc'
|
|
||||||
# , verbose = 3)
|
|
||||||
|
|
||||||
# gscv_fs_lr_fit = gscv_fs_lr.fit(X, y)
|
|
||||||
# gscv_fs_lr_fit_be_mod = gscv_fs_lr_fit.best_params_
|
|
||||||
# gscv_fs_lr_fit_be_res = gscv_fs_lr_fit.cv_results_
|
|
||||||
|
|
||||||
# print('Best model:\n', gscv_fs_lr_fit_be_mod)
|
|
||||||
# print('Best models score:\n', gscv_fs_lr_fit.best_score_, ':' , round(gscv_fs_lr_fit.best_score_, 2))
|
|
||||||
|
|
||||||
# #print('\nMean test score from fit results:', round(mean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
|
|
||||||
# print('\nMean test score from fit results:', round(np.nanmean(gscv_fs_lr_fit_be_res['mean_test_mcc']),2))
|
|
||||||
|
|
||||||
##############################################################################
|
|
||||||
#MANUAL
|
|
||||||
|
|
||||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||||
model_lr = LogisticRegression(**rs)
|
model_lr = LogisticRegression(**rs)
|
||||||
model_rfecv = RFECV(estimator = model_lr
|
model_rfecv = RFECV(estimator = model_lr
|
||||||
|
@ -99,15 +20,6 @@ model_rfecv = RFECV(estimator = model_lr
|
||||||
, scoring = 'matthews_corrcoef'
|
, scoring = 'matthews_corrcoef'
|
||||||
)
|
)
|
||||||
|
|
||||||
# model_rfecv = SequentialFeatureSelector(estimator = model_lr
|
|
||||||
# , n_features_to_select = 'auto'
|
|
||||||
# , tol = None
|
|
||||||
# # , cv = 10
|
|
||||||
# , cv = rskf_cv
|
|
||||||
# # , direction ='backward'
|
|
||||||
# , direction ='forward'
|
|
||||||
# , **njobs)
|
|
||||||
|
|
||||||
param_grid2 = [
|
param_grid2 = [
|
||||||
{
|
{
|
||||||
#'clf__estimator': [LogisticRegression(**rs)],
|
#'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
@ -155,14 +67,15 @@ pipeline = Pipeline([('pre', MinMaxScaler())
|
||||||
|
|
||||||
# Fit
|
# Fit
|
||||||
lr_fs_fit = pipeline.fit(X,y)
|
lr_fs_fit = pipeline.fit(X,y)
|
||||||
lr_fs_fit_be_mod = lr_fs_fit.best_params_
|
#lr_fs_fit_be_mod = lr_fs_fit.best_params_
|
||||||
lr_fs_fit_be_res = lr_fs_fit.cv_results_
|
#lr_fs_fit_be_res = lr_fs_fit.cv_results_
|
||||||
|
dir(lr_fs_fit)
|
||||||
|
|
||||||
print('Best model:\n', lr_fs_fit_be_mod)
|
print('Best model:\n', lr_fs_fit_be_mod)
|
||||||
print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2))
|
print('Best models score:\n', lr_fs_fit.best_score_, ':' , round(lr_fs_fit.best_score_, 2))
|
||||||
|
|
||||||
pipeline.predict(X_bts)
|
pipeline.predict(X_bts)
|
||||||
lr_fs.predict(X_bts)
|
lr_fs_fit.predict(X_bts)
|
||||||
|
|
||||||
test_predict = pipeline.predict(X_bts)
|
test_predict = pipeline.predict(X_bts)
|
||||||
print(test_predict)
|
print(test_predict)
|
||||||
|
@ -238,4 +151,4 @@ lr_df
|
||||||
|
|
||||||
#FIXME: tidy the index of the formatted df
|
#FIXME: tidy the index of the formatted df
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue