finally made the fs work within class and without
This commit is contained in:
parent
4a9e9dfedf
commit
39cd7b4259
3 changed files with 95 additions and 110 deletions
107
UQ_LR_FS_p2.py
107
UQ_LR_FS_p2.py
|
@ -21,18 +21,25 @@ class ClfSwitcher(BaseEstimator):
|
|||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
#feature = RFECV()
|
||||
#feature = RFECV(SGDClassifier())
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
#self.feature = feature
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
#self.feature.fit(X, y)
|
||||
return self
|
||||
|
||||
# def transform(self, X, y=None):
|
||||
# #self.estimator.transform(X, y)
|
||||
# self.feature.transform(X)
|
||||
# return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
|
@ -42,23 +49,26 @@ class ClfSwitcher(BaseEstimator):
|
|||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
#%%
|
||||
parameters = [
|
||||
# {'feature__fs__estimator': LogisticRegression(**rs)
|
||||
# , 'feature__fs__cv': [10]
|
||||
# , 'feature__fs__scoring': ['matthews_corrcoef']
|
||||
# },
|
||||
|
||||
# {'fs__feature__min_features_to_select': [1]
|
||||
# , 'fs__feature__scoring': ['matthews_corrcoef']
|
||||
# , 'fs__feature__cv': [skf_cv]},
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
#, 'fs__scoring': ['matthews_corrcoef']
|
||||
, 'fs__cv': [skf_cv]},
|
||||
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
}#,
|
||||
# {
|
||||
# 'clf__estimator': [MODEL2(**rs)],
|
||||
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
# 'clf__estimator__penalty': ['l2', 'none'],
|
||||
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
|
@ -68,13 +78,14 @@ parameters = [
|
|||
#%% Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
# , ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
||||
, ('selector', SelectKBest(mutual_info_classif, k=6))
|
||||
, ('clf', ClfSwitcher())
|
||||
])
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
||||
# , ('fs', ClfSwitcher())
|
||||
, ('clf', ClfSwitcher())
|
||||
])
|
||||
|
||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
mod_fs = GridSearchCV(pipeline
|
||||
#%%
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_lr = GridSearchCV(pipeline
|
||||
, parameters
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
|
@ -82,6 +93,66 @@ mod_fs = GridSearchCV(pipeline
|
|||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_lr.fit(X, y)
|
||||
|
||||
####
|
||||
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||
|
||||
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
|
||||
param_grid2 = [
|
||||
|
||||
{'fs__min_features_to_select': [1]
|
||||
, 'fs__cv': [skf_cv]
|
||||
},
|
||||
|
||||
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
#'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
'clf__solver': ['sag']
|
||||
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,200,100)),
|
||||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
# step 4: create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
#, ('fs', model_rfecv)
|
||||
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))
|
||||
, ('clf', LogisticRegression(**rs))])
|
||||
|
||||
# step 5: Perform Gridsearch CV
|
||||
gs_final = GridSearchCV(pipeline
|
||||
, param_grid2
|
||||
, cv = skf_cv
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, verbose = 1
|
||||
, return_train_score = False
|
||||
, **njobs)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%% Fit
|
||||
mod_fs_fit = mod_fs.fit(X, y)
|
||||
mod_fs_fbm = mod_fs_fit.best_params_
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue