reformatting code to select needed df for analysis

This commit is contained in:
Tanushree Tunstall 2020-11-20 11:43:03 +00:00
parent a6cbaab40a
commit b72c4df796
7 changed files with 243 additions and 102 deletions

View file

@ -25,7 +25,7 @@ clinical_cols = c("mosaic"
, "onsfindeath"
, "onset_2_initial"
, "o2_sat_admis"
, "o2_sat_suppl"
#, "o2_sat_suppl"
, "ethnicity"
, "smoking"
, "ia_cxr"

View file

@ -13,18 +13,25 @@ getwd()
#====================
source("read_data.R")
#============================
# Data to use: Important step
#============================
# select df to use
my_data = fp_adults
# clear unnecessary variables
rm(all_df)
rm(all_df, adult_df, fp_adults_na)
########################################################################
#=========
# sam
#=========
sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T)
sam_cols_i = str_extract(colnames(adult_df), sam_regex) # not boolean
#sam_cols_b = colnames(adult_df)%in%sam_cols_i # boolean
sam_cols_i = str_extract(colnames(my_data), sam_regex) # not boolean
#sam_cols_b = colnames(my_data)%in%sam_cols_i # boolean
sam_cols = colnames(adult_df)[colnames(adult_df)%in%sam_cols_i]
sam_cols = colnames(my_data)[colnames(my_data)%in%sam_cols_i]
# this contains log columns + daysamp_samXX: omitting these
sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T)
@ -48,7 +55,7 @@ cat("Extracting SAM cols + metadata_cols")
if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){
cat("Extracing", length(sam_cols_to_extract), "columns for sam")
sam_df = adult_df[, sam_cols_to_extract]
sam_df = my_data[, sam_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns"
@ -61,10 +68,10 @@ colnames_sam_df = colnames(sam_df); colnames_sam_df
# serum
#=========
serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T)
serum_cols_i = str_extract(colnames(adult_df), serum_regex) # not boolean
#serum_cols_b = colnames(adult_df)%in%serum_cols_i # boolean
serum_cols_i = str_extract(colnames(my_data), serum_regex) # not boolean
#serum_cols_b = colnames(my_data)%in%serum_cols_i # boolean
serum_cols = colnames(adult_df)[colnames(adult_df)%in%serum_cols_i]
serum_cols = colnames(my_data)[colnames(my_data)%in%serum_cols_i]
# this contains log columns + dayserump_serumXX: omitting these
serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T)
@ -88,7 +95,7 @@ cat("Extracting SERUM cols + metadata_cols")
if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){
cat("Extracing", length(serum_cols_to_extract), "columns for serum")
serum_df = adult_df[, serum_cols_to_extract]
serum_df = my_data[, serum_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns"
@ -101,10 +108,10 @@ colnames_serum_df = colnames(serum_df); colnames_serum_df
# npa
#=========
npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T)
npa_cols_i = str_extract(colnames(adult_df), npa_regex) # not boolean
#npa_cols_b = colnames(adult_df)%in%npa_cols_i # boolean
npa_cols_i = str_extract(colnames(my_data), npa_regex) # not boolean
#npa_cols_b = colnames(my_data)%in%npa_cols_i # boolean
npa_cols = colnames(adult_df)[colnames(adult_df)%in%npa_cols_i]
npa_cols = colnames(my_data)[colnames(my_data)%in%npa_cols_i]
# this contains log columns + daynpap_npaXX: omitting these
npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T)
@ -128,7 +135,7 @@ cat("Extracting NPA cols + metadata_cols")
if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){
cat("Extracing", length(npa_cols_to_extract), "columns for npa")
npa_df = adult_df[, npa_cols_to_extract]
npa_df = my_data[, npa_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns"
@ -166,21 +173,21 @@ for (i in extra_cols){
}
}
tail(colnames_check_f)
# write file?
quick_check = as.data.frame(cbind(metadata_all$mosaic
, metadata_all$adult
, metadata_all$age
, metadata_all$obesity
, metadata_all$obese2
))
colnames(quick_check) = c("mosaic", "adult", "age", "obesity", "obese2")
##########################################################################
# LF data
##########################################################################
cols_to_omit = c("adult", "obese2"
, "height", "height_unit", "weight"
, "weight_unit", "visual_est_bmi", "bmi_rating")
cols_to_omit = c("adult"
#, "obese2"
#, "height", "height_unit", "weight"
#, "weight_unit", "visual_est_bmi", "bmi_rating"
)
pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
ncols_omitted
#==============
# lf data: sam
@ -198,11 +205,11 @@ pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -249,11 +256,11 @@ serum_wf = serum_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -296,11 +303,11 @@ npa_wf = npa_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -333,7 +340,7 @@ if (
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
rm(adult_df)
rm(my_data)
rm(colnames_check)
rm(i, j
#, expected_cols
@ -344,3 +351,4 @@ rm(sam_df_adults, serum_df_adults, npa_df_adults)
# rm df
rm(sam_df, serum_df, npa_df)
rm(colnames_check_f, fp_adults)

View file

@ -53,31 +53,36 @@ if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(tab
table(clinical_df$ia_exac_copd)
str(clinical_df)
#clinical_df$o2_sat_suppl
########################################################################
#==================================
# asthma and copd status correction
# for conflicting field!
# Check asthma and copd conflict
#=================================
if ( table(fp_adults$ia_exac_copd, fp_adults$asthma) [[2,2]] == 0){
cat("PASS: asthma and copd do not conflict")
}else{
cat("Conflict detected in asthm and copd filed, attempting to resolve...")
# Reassign the copd and asthma status and do some checks
table(clinical_df$ia_exac_copd); sum(is.na(clinical_df$ia_exac_copd))
clinical_df$ia_exac_copd[clinical_df$ia_exac_copd< 1]<- 0
clinical_df$ia_exac_copd[is.na(clinical_df$ia_exac_copd)] <- 0
table(clinical_df$ia_exac_copd); sum(is.na(clinical_df$ia_exac_copd))
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
fp_adults$ia_exac_copd[fp_adults$ia_exac_copd< 1]<- 0
fp_adults$ia_exac_copd[is.na(fp_adults$ia_exac_copd)] <- 0
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
# check copd and asthma status
table(clinical_df$ia_exac_copd, clinical_df$asthma)
check_copd_and_asthma_1<- subset(clinical_df, ia_exac_copd ==1 & asthma == 1) # check this is 3
table(fp_adults$ia_exac_copd, fp_adults$asthma)
check_copd_and_asthma_1<- subset(fp_adults, ia_exac_copd ==1 & asthma == 1) # check this is 3
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
clinical_df$asthma[clinical_df$ia_exac_copd == 1 & clinical_df$asthma == 1]= 0
table(clinical_df$ia_exac_copd, clinical_df$asthma)
foo<- subset(clinical_df, asthma==1 & ia_exac_copd ==1) # check that its 0
fp_adults$asthma[fp_adults$ia_exac_copd == 1 & fp_adults$asthma == 1]= 0
table(fp_adults$ia_exac_copd, fp_adults$asthma)
foo<- subset(fp_adults, asthma==1 & ia_exac_copd ==1) # check that its 0
rm(check_copd_and_asthma_1, foo)
cat("Check status again...")
}
#=====================================================================
#=================================
# resp scores: In, max and t1 & t2
@ -125,29 +130,30 @@ rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev
# age
#========
# Create categories of variables
clinical_df$age = round(clinical_df$age, digits = 0)
table(clinical_df$age)
table(clinical_df$asthma, clinical_df$age)
min(clinical_df$age); max(clinical_df$age)
clinical_df$age_int = round(clinical_df$age, digits = 0)
table(clinical_df$age_int)
table(clinical_df$asthma, clinical_df$age_int)
min(clinical_df$age_int); max(clinical_df$age_int)
max_age_interval = round_any(max(clinical_df$age), 10, f = ceiling)
max_age_interval = round_any(max(clinical_df$age_int), 10, f = ceiling)
max_age_interval
min_age = min(clinical_df$age); min_age #19
min_age = min(clinical_df$age_int); min_age #19
min_age_interval = min_age - 1; min_age_interval
#age_bins = cut(clinical_df$age, c(0,18,30,40,50,60,70,80,90))
age_bins = cut(clinical_df$age, c(min_age_interval, 30, 40, 50, 60, 70, max_age_interval))
#age_bins = cut(clinical_df$age_int, c(0,18,30,40,50,60,70,80,90))
age_bins = cut(clinical_df$age_int, c(min_age_interval, 30, 40, 50, 60, 70, max_age_interval))
clinical_df$age_bins = age_bins
dim(clinical_df) # 133 27
dim(clinical_df) # 133 28
# age_bins (to keep consistent with the results table)
class(clinical_df$age_bins)
levels(clinical_df$age_bins)
#"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]"
table(clinical_df$asthma, clinical_df$age_bins)
# (18,30] (30,40] (40,50] (50,60] (60,70] (70,80]
#0 25 17 25 14 11 1
#1 11 8 12 5 3 2
#1 11 8 12 5 2 2
if (sum(table(clinical_df$asthma, clinical_df$age_bins)) == nrow(clinical_df) ){
cat("\nPASS: age_bins assigned successfully")
@ -156,7 +162,7 @@ if (sum(table(clinical_df$asthma, clinical_df$age_bins)) == nrow(clinical_df) ){
quit()
}
# reassign
# reassign levels
class(clinical_df$age_bins)
levels(clinical_df$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]")
table(clinical_df$asthma, clinical_df$age_bins)
@ -170,11 +176,25 @@ sum(table(clinical_df$asthma, clinical_df$age_bins)) == nrow(clinical_df)
#===========================
# O2 saturation binning
#===========================
clinical_df$o2_sat_admis
n1 = sum(is.na(clinical_df$o2_sat_admis))
clinical_df$o2_sat_admis = round(clinical_df$o2_sat_admis, digits = 0)
table(clinical_df$o2_sat_admis)
tot_o2 = sum(table(clinical_df$o2_sat_admis))- table(clinical_df$o2_sat_admis)[["-1"]]
tot_o2
n_text_code = table(clinical_df$o2_sat_admis)[["-1"]]
clinical_df$o2_sat_admis[clinical_df$o2_sat_admis <0] <- NA
n2 = sum(is.na(clinical_df$o2_sat_admis))
if (n2 == n1 + n_text_code) {
cat ("PASS: -1 code converted to NA")
} else{
cat("FAIL: something went wrong!")
}
o2_sat_bin = cut(clinical_df$o2_sat_admis, c(0,92,100))
clinical_df$o2_sat_bin = o2_sat_bin
table(clinical_df$o2_sat_bin)
@ -184,6 +204,8 @@ sum(table(clinical_df$o2_sat_bin)) == tot_o2
#===========================
# Onset to initial binning
#===========================
clinical_df$onset_2_initial
max_in = max(clinical_df$onset_2_initial); max_in #23
min_in = min(clinical_df$onset_2_initial) - 1 ; min_in # -6
@ -198,14 +220,15 @@ sum(table(clinical_df$onset_initial_bin)) == tot_onset2ini
#=======================
# seasonal flu: sfluv
#=======================
# should be a factor
if (! is.factor(clinical_df$sfluv)){
clinical_df$sfluv = as.factor(clinical_df$sfluv)
}
class(clinical_df$sfluv) #[1] "factor"
class(clinical_df$sfluv)
levels(clinical_df$sfluv)
table(clinical_df$sfluv)
table(clinical_df$asthma, clinical_df$sfluv)
# reassign
levels(clinical_df$sfluv) <- c("0", "0", "1")
table(clinical_df$asthma, clinical_df$sfluv)
@ -213,14 +236,16 @@ table(clinical_df$asthma, clinical_df$sfluv)
#=======================
# h1n1v
#=======================
# should be a factor
if (! is.factor(clinical_df$h1n1v)){
clinical_df$h1n1v = as.factor(clinical_df$h1n1v)
}
class(clinical_df$h1n1v) #[1] "factor"
class(clinical_df$h1n1v)
levels(clinical_df$h1n1v)
table(clinical_df$h1n1v)
table(clinical_df$asthma, clinical_df$h1n1v)
# reassign
levels(clinical_df$h1n1v) <- c("0", "0", "1")
table(clinical_df$asthma, clinical_df$h1n1v)
@ -229,18 +254,21 @@ table(clinical_df$asthma, clinical_df$h1n1v)
# ethnicity
#=======================
class(clinical_df$ethnicity) # integer
table(clinical_df$ethnicity)
table(clinical_df$asthma, clinical_df$ethnicity)
clinical_df$ethnicity[clinical_df$ethnicity == 4] <- 2
table(clinical_df$ethnicity)
table(clinical_df$asthma, clinical_df$ethnicity)
#=======================
# pneumonia
#=======================
table(clinical_df$ia_cxr)
class(clinical_df$ia_cxr) # integer
# ia_cxr 2 ---> yes pneumonia (1)
# 1 ---> no (0)
# ! 1 or 2 -- > "unkown"
# ! 1 or 2 -- > "unknown"
# reassign the pneumonia codes
#0: not performed
@ -251,7 +279,6 @@ class(clinical_df$ia_cxr) # integer
#-2: n/a specified by the clinician # not in the data...
#-3: unknown specified by clinician
table(clinical_df$ia_cxr)
#-3 -1 0 1 2 3
#5 48 13 47 17 3
@ -262,6 +289,8 @@ table(clinical_df$ia_cxr)
# 1 2
#69 47 17
sum(is.na(clinical_df$ia_cxr))
clinical_df$ia_cxr[clinical_df$ia_cxr == 1] <- 0
clinical_df$ia_cxr[clinical_df$ia_cxr == 2] <- 1
table(clinical_df$ia_cxr)
@ -306,7 +335,7 @@ clinical_df$smoking[clinical_df$smoking == 4 | clinical_df$smoking == 2 ] <- 0
clinical_df$smoking[clinical_df$smoking == 1 | clinical_df$smoking == 3 ] <- 1
clinical_df$smoking[clinical_df$smoking == -1 | clinical_df$smoking == -2 | clinical_df$smoking == -3 ] <- NA
table(clinical_df$smoking)
table(clinical_df$smoking); sum(is.na(clinical_df$smoking))
# 0 1
#30 49 54
@ -316,17 +345,13 @@ table(clinical_df$asthma, clinical_df$smoking)
# 0 1
#0 24 32 37
#1 6 17 17
# 0 1
#0 23 32 35
#1 7 17 19
################################################################
#=========================
# Merge: clinical_df and infile ics
#=========================
merging_cols = intersect( names(clinical_df), names(clinical_ics) )
merging_cols
clinical_df_ics = merge(clinical_df, clinical_ics, by = merging_cols, all = T); clinical_df_ics
@ -351,6 +376,15 @@ if (nrow(clinical_df_ics) == nrow(clinical_df) & nrow(clinical_ics)){
, "\nExpected nrows:", nrow(fp_adults))
}
# change the factor vars to integers
str(clinical_df_ics)
factor_vars = lapply(clinical_df_ics, class) == "factor"
table(factor_vars)
clinical_df_ics[, factor_vars] <- lapply(clinical_df_ics[, factor_vars], as.integer)
table(factor_vars)
str(clinical_df_ics)
#======================
# writing output file
#======================
@ -359,9 +393,8 @@ outfile_reg = paste0(outdir, outfile_name_reg)
cat("\nWriting clinical file for regression:", outfile_reg)
write.csv(clinical_df_ics, file = outfile_reg)
#write.csv(clinical_df_ics, file = outfile_reg)
################################################################
rm(age_bins, max_age_interval, max_in, min_in
, o2_sat_bin, onset_initial_bin, tot_o2
, tot_onset2ini, meta_data_cols

View file

@ -214,4 +214,36 @@ comb_stats_categ_df_f = comb_stats_categ_df[order(comb_stats_categ_df$p_signif
# write output file
#******************
cat("Chisq and fishers test results in:", outfile_clin_categ)
write.csv(comb_stats_categ_df_f, outfile_clin_categ, row.names = FALSE)
#write.csv(comb_stats_categ_df_f, outfile_clin_categ, row.names = FALSE)
#==================
#0 date not recorded
#-1 not recorded
#-2 n/a specified by clinician
#-3 unknown specified by
chisq_test(table(clinical_df_ics$obesity, clinical_df_ics$smoking))
chisq_test(table(clinical_df_ics$obesity, clinical_df_ics$max_resp_score))
chisq_test(table(clinical_df_ics$obesity, clinical_df_ics$T1_resp_score))
chisq_test(table(clinical_df_ics$obesity, clinical_df_ics$t1_resp_recoded))
obese_df = clinical_df_ics[clinical_df_ics$obesity == 1,]
not_ob_df = clinical_df_ics[clinical_df_ics$obesity == 0,]
wilcox.test(obese_df$age, not_ob_df$age, paired = F)
wilcox.test(obese_df$los, not_ob_df$los, paired = F)
wilcox.test(obese_df$o2_sat_admis, not_ob_df$o2_sat_admis, paired = F)
wilcox.test(obese_df$onset_2_initial, not_ob_df$onset_2_initial, paired = F)
wilcox.test(obese_df$onset2final, not_ob_df$onset2final, paired = F)
wilcox.test(obese_df$onsfindeath, not_ob_df$onsfindeath, paired = F)
clinical_df_ics$age
clinical_df_ics$los
clinical_df_ics$o2_sat_admis #***** (already bin)
clinical_df_ics$onset_2_initial # ***** (already bin)
clinical_df_ics$onset2final
clinical_df_ics$onsfindeath

View file

@ -25,27 +25,28 @@ outfile_clinical_unpaired
# Unpaired stats for clinical data b/w groups: wilcoxon UNpaired analysis
# No correction required
########################################################################
str(clinical_df_ics)
numerical_cols = c("age"
#, "vl_pfu_ul_npa1"
, "vl_pfu_ul_npa1"
, "los"
, "onset2final"
, "onsfindeath"
, "onset_2_initial"
, "o2_sat_admis")
#, "onset_2_initial" # already bin
#, "o2_sat_admis"# already bin
)
metadata_cols = c("mosaic", "obesity")
clinical_df_numerical = clinical_df[, c(metadata_cols, numerical_cols)]
clinical_df_numerical = clinical_df_ics[, c(metadata_cols, numerical_cols)]
pivot_cols = metadata_cols
#pivot_cols = metadata_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
expected_rows_clinical_lf = nrow(clinical_df_numerical) * (length(clinical_df_numerical) - length(pivot_cols)); expected_rows_clinical_lf
# lf data colnames
keycol <- "clinical_params"
valuecol <- "value"
gathercols <- c("age", "los", "onset2final", "onsfindeath", "onset_2_initial", "o2_sat_admis")
gathercols <- numerical_cols
clinical_lf = gather_(clinical_df_numerical, keycol, valuecol, gathercols)
@ -70,12 +71,15 @@ stats_un_clinical = compare_means(value~obesity
#, data = clinical_lf_comp
, paired = FALSE)
head(stats_un_clinical)
# rstatix
stat_df <- clinical_lf %>%
group_by(clinical_params) %>%
wilcox_test(value ~ obesity, paired = F) %>%
add_significance("p")
stat_df$p_format = round(stat_df$p, digits = 3)
stat_df
#----------------------------------------
# calculate n_obs for each clinical param: Overall
@ -101,31 +105,39 @@ n_all_gp = merge(n_all, n_gp
#----------------------------------------
# calculate n_obs for each clinical param: complete cases
#----------------------------------------
n_comp = data.frame(table(clinical_lf_comp$clinical_params))
n_comp = data.frame(table(clinical_lf$clinical_params))
colnames(n_comp) = c("clinical_params", "n_complete")
n_comp$clinical_params = as.character(n_comp$clinical_params)
n_comp
n_gp_comp_lf = data.frame(table(clinical_lf_comp$clinical_params, clinical_lf_comp$obesity)); n_gp_comp_lf
n_gp_comp_lf = data.frame(table(clinical_lf$clinical_params
, clinical_lf$obesity)); n_gp_comp_lf
n_gp_comp = spread(n_gp_comp_lf, "Var2", "Freq"); n_gp_comp
colnames(n_gp_comp)
colnames(n_gp_comp) = c("clinical_params"
, paste0("n_complete_gp", colnames(n_gp_comp)[2])
, paste0("n_complete_gp", colnames(n_gp_comp)[3]))
#---------
# merge 1
#---------
n_comp_gp = merge(n_comp, n_gp_comp
, by = intersect( names(n_comp), names(n_gp_comp))
, all = T)
n_comp_gp
#---------
# merge 2
#---------
merge_cols = intersect(names(n_all_gp), names(n_comp_gp)); merge_cols
n_df = merge(n_all_gp, n_comp_gp, by = merge_cols, all = T); n_df
#==================================
# Merge: merge stats + n_obs df
#===================================
#----------------------------------
# Merge 3: merge stats + n_obs df
#----------------------------------
merging_cols = intersect(names(stats_un_clinical), names(n_df)); merging_cols
if (all(n_df$clinical_params%in%stats_un_clinical$clinical_params)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_clinical = merge(stats_un_clinical, n_df, by = merging_cols, all = T)
@ -188,6 +200,7 @@ if( length(my_col_order2) == ncol(stats_clinical_df) && (all(my_col_order2%in%co
quit()
}
# assign nice column names like replace "." with "_"
# same ordering as my_col_order2, just minor formatting
colnames(stats_clinical_df_f) = c("clinical_params"
, "method"
, "group1"
@ -208,4 +221,4 @@ colnames(stats_clinical_df_f)
# write output file
#******************
cat("UNpaired stats for clinical data for groups in:", outfile_clinical_unpaired)
#write.csv(stats_clinical_df_f, outfile_clinical_unpaired, row.names = FALSE)
write.csv(stats_clinical_df_f, outfile_clinical_unpaired, row.names = FALSE)

View file

@ -365,6 +365,14 @@ colnames(combined_unpaired_stats_f) = c("mediator"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05])
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig)
sig_meds = combined_unpaired_stats_f[combined_unpaired_stats_f$p_signif<0.05,]
########################################################################
#******************
# write output file

View file

@ -30,11 +30,11 @@ meta_data_cols = c("mosaic", "gender", "age"
, "adult"
, "flustat", "type"
, "obesity"
, "obese2"
, "height", "height_unit"
, "weight", "weight_unit"
, "ia_height_ftin", "ia_height_m", "ia_weight"
, "visual_est_bmi", "bmi_rating"
#, "obese2"
#, "height", "height_unit"
#, "weight", "weight_unit"
#, "ia_height_ftin", "ia_height_m", "ia_weight"
#, "visual_est_bmi", "bmi_rating"
)
# check if these columns to select are present in the data
@ -55,9 +55,9 @@ if (table(adult_df$adult == 1)[[1]] == nrow(adult_df) ){
cat ("\nFAIL: adult df number mismatch!")
}
#==============
#=================================
# FLU positive: adult patients
#==============
#=================================
# extract the flu positive population
fp_adults = adult_df[adult_df$flustat == 1,]
@ -67,6 +67,53 @@ if (table(fp_adults$flustat == 1)[[1]] == nrow(fp_adults) ){
cat ("\nFAIL: adult df number mismatch!")
}
#=============================================
# FLU positive adult patients: without asthma
#=============================================
#-----------------------------------
# asthma and copd status correction
# for conflicting field!
#------------------------------------
# Reassign the copd and asthma status and do some checks
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
fp_adults$ia_exac_copd[fp_adults$ia_exac_copd< 1]<- 0
fp_adults$ia_exac_copd[is.na(fp_adults$ia_exac_copd)] <- 0
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
# check copd and asthma status
table(fp_adults$ia_exac_copd, fp_adults$asthma)
check_copd_and_asthma_1<- subset(fp_adults, ia_exac_copd ==1 & asthma == 1) # check this is 3
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
fp_adults$asthma[fp_adults$ia_exac_copd == 1 & fp_adults$asthma == 1]= 0
table(fp_adults$ia_exac_copd, fp_adults$asthma)
foo<- subset(fp_adults, asthma==1 & ia_exac_copd ==1) # check that its 0
rm(check_copd_and_asthma_1, foo)
if ( table(fp_adults$ia_exac_copd, fp_adults$asthma) [[2,2]] == 0 ){
cat("\nPASS: asthma and copd do not conflict")
} else{
cat ("\nFAIL: asthma and copd conflict not resolved!")
quit()
}
cat("\nExtracting flu positive without asthma")
table(fp_adults$asthma)
cat("\nNo. of asthmatics:", table(fp_adults$asthma)[[2]]
, "\nNo. of non-asthmatics:", table(fp_adults$asthma)[[1]])
str(fp_adults$asthma)
table(fp_adults$obesity)
table(fp_adults$obesity, fp_adults$asthma)
fp_adults_na = fp_adults[fp_adults$asthma == 0,]
table(fp_adults_na$obesity)
table(fp_adults_na$obesity, fp_adults_na$asthma)
#============
# hc
#============