mosaic_2020/data_extraction_formatting.R

354 lines
12 KiB
R
Executable file

#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Extract relevant columns from mosaic adults data
# sam
# serum
# npa
########################################################################
#====================
# Input: source data
#====================
source("read_data.R")
#============================
# Data to use: Important step
#============================
# select df to use
my_data = fp_adults
# clear unnecessary variables
rm(all_df, adult_df, fp_adults_na)
########################################################################
#=========
# sam
#=========
sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T)
sam_cols_i = str_extract(colnames(my_data), sam_regex) # not boolean
#sam_cols_b = colnames(my_data)%in%sam_cols_i # boolean
sam_cols = colnames(my_data)[colnames(my_data)%in%sam_cols_i]
# this contains log columns + daysamp_samXX: omitting these
sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T)
sam_cols_to_omit = sam_cols[grepl(sam_regex_log_days, sam_cols)]; sam_cols_to_omit
sam_cols_clean = sam_cols[!sam_cols%in%sam_cols_to_omit]; sam_cols_clean
length(sam_cols_clean)
if( length(sam_cols_clean) == length(sam_cols) - length(sam_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean SAM cols to extract:", length(sam_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(sam_cols) - length(sam_cols_to_omit)
, "Got:", length(sam_cols_clean) )
}
sam_cols_to_extract = c(meta_data_cols, sam_cols_clean)
cat("Extracting SAM cols + metadata_cols")
if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){
cat("Extracing", length(sam_cols_to_extract), "columns for sam")
sam_df = my_data[, sam_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns"
, "Got:", length(sam_cols_to_extract))
}
colnames_sam_df = colnames(sam_df); colnames_sam_df
#=========
# serum
#=========
serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T)
serum_cols_i = str_extract(colnames(my_data), serum_regex) # not boolean
#serum_cols_b = colnames(my_data)%in%serum_cols_i # boolean
serum_cols = colnames(my_data)[colnames(my_data)%in%serum_cols_i]
# this contains log columns + dayserump_serumXX: omitting these
serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T)
serum_cols_to_omit = serum_cols[grepl(serum_regex_log_days, serum_cols)]; serum_cols_to_omit
serum_cols_clean = serum_cols[!serum_cols%in%serum_cols_to_omit]; serum_cols_clean
length(serum_cols_clean)
if( length(serum_cols_clean) == length(serum_cols) - length(serum_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean serum cols to extract:", length(serum_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(serum_cols) - length(serum_cols_to_omit)
, "Got:", length(serum_cols_clean) )
}
serum_cols_to_extract = c(meta_data_cols, serum_cols_clean)
cat("Extracting SERUM cols + metadata_cols")
if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){
cat("Extracing", length(serum_cols_to_extract), "columns for serum")
serum_df = my_data[, serum_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns"
, "Got:", length(serum_cols_to_extract))
}
colnames_serum_df = colnames(serum_df); colnames_serum_df
#=========
# npa
#=========
npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T)
npa_cols_i = str_extract(colnames(my_data), npa_regex) # not boolean
#npa_cols_b = colnames(my_data)%in%npa_cols_i # boolean
npa_cols = colnames(my_data)[colnames(my_data)%in%npa_cols_i]
# this contains log columns + daynpap_npaXX: omitting these
npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T)
npa_cols_to_omit = npa_cols[grepl(npa_regex_log_days, npa_cols)]; npa_cols_to_omit
npa_cols_clean = npa_cols[!npa_cols%in%npa_cols_to_omit]; npa_cols_clean
length(npa_cols_clean)
if( length(npa_cols_clean) == length(npa_cols) - length(npa_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean npa cols to extract:", length(npa_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(npa_cols) - length(npa_cols_to_omit)
, "Got:", length(npa_cols_clean) )
}
npa_cols_to_extract = c(meta_data_cols, npa_cols_clean)
cat("Extracting NPA cols + metadata_cols")
if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){
cat("Extracing", length(npa_cols_to_extract), "columns for npa")
npa_df = my_data[, npa_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns"
, "Got:", length(npa_cols_to_extract))
}
colnames_npa_df = colnames(npa_df); colnames_npa_df
#==============
# quick checks
#==============
colnames_check = as.data.frame(cbind(colnames_sam_df, colnames_serum_df, colnames_npa_df))
tail(colnames_check) # gives a warning message due to differeing no. of rows for cbind!
# put NA where a match doesn't exist
# unmatched lengths
#colnames_check[117,1] <- NA
#colnames_check[117,2] <- NA
if ( ncol(sam_df) == ncol(serum_df) ){
start = ncol(sam_df)+1
extra_cols = start:ncol(npa_df)
}
colnames_check_f = colnames_check
tail(colnames_check_f)
for (i in extra_cols){
for (j in 1:2) {
cat("\ni:", i
,"\nj:", j)
colnames_check_f[i,j] <- NA
#colnames_check_f[i, j]< - NA
}
}
tail(colnames_check_f)
##########################################################################
# LF data
##########################################################################
cols_to_omit = c("adult"
#, "obese2"
#, "height", "height_unit", "weight"
#, "weight_unit", "visual_est_bmi", "bmi_rating"
)
pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
ncols_omitted
#==============
# lf data: sam
#==============
str(sam_df)
table(sam_df$obesity); table(sam_df$obese2)
#sam_df_adults = sam_df[sam_df$adult == 1,] # resolved at source and only dealing wit age as adult
sam_df_adults = sam_df
wf_cols = colnames(sam_df_adults)[!colnames(sam_df_adults)%in%cols_to_omit]
sam_wf = sam_df_adults[wf_cols]
pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_sam_lf = nrow(sam_wf) * (length(sam_wf) - length(pivot_cols)); expected_rows_sam_lf
# using regex:
sam_lf = sam_wf %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(sam_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_lf$mediator))) == expected_rows_sam_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(sam_lf)
, "\nNo. of cols: ", ncol(sam_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_sam_lf
, "\nGot: ", nrow(sam_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#library(data.table)
#foo = sam_df_adults[1:10]
#long <- melt(setDT(sam_df_adults), id.vars = pivot_cols, variable.name = "levels")
#==============
# lf data: serum
#==============
str(serum_df)
table(serum_df$obesity); table(serum_df$obese2)
#serum_df_adults = serum_df[serum_df$adult == 1,] # extract based on age
serum_df_adults = serum_df
wf_cols = colnames(serum_df_adults)[!colnames(serum_df_adults)%in%cols_to_omit]
serum_wf = serum_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_serum_lf = nrow(serum_wf) * (length(serum_wf) - length(pivot_cols)); expected_rows_serum_lf
# using regex:
serum_lf = serum_wf %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(serum_lf) == expected_rows_serum_lf) & (sum(table(is.na(serum_lf$mediator))) == expected_rows_serum_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(serum_lf)
, "\nNo. of cols: ", ncol(serum_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_serum_lf
, "\nGot: ", nrow(serum_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#==============
# lf data: npa
#==============
str(npa_df)
table(npa_df$obesity); table(npa_df$obese2)
#npa_df_adults = npa_df[npa_df$adult == 1,] # extract based on age
npa_df_adults = npa_df
wf_cols = colnames(npa_df_adults)[!colnames(npa_df_adults)%in%cols_to_omit]
npa_wf = npa_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_npa_lf = nrow(npa_wf) * (length(npa_wf) - length(pivot_cols)); expected_rows_npa_lf
# using regex:
npa_lf = npa_wf %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(npa_lf) == expected_rows_npa_lf) & (sum(table(is.na(npa_lf$mediator))) == expected_rows_npa_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(npa_lf)
, "\nNo. of cols: ", ncol(npa_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_npa_lf
, "\nGot: ", nrow(npa_lf)
, "\ncheck expected rows calculation!"))
quit()
}
###############################################################################
# remove unnecessary variables
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
rm(my_data)
rm(colnames_check)
rm(i, j
#, expected_cols
, start, wf_cols, extra_cols, cols_to_omit)
# rm not_clean dfs
rm(sam_df_adults, serum_df_adults, npa_df_adults)
# rm df
rm(sam_df, serum_df, npa_df)
rm(colnames_check_f, fp_adults)