reformatting code to select needed df for analysis

This commit is contained in:
Tanushree Tunstall 2020-11-20 11:43:03 +00:00
parent a6cbaab40a
commit b72c4df796
7 changed files with 243 additions and 102 deletions

View file

@ -13,18 +13,25 @@ getwd()
#====================
source("read_data.R")
#============================
# Data to use: Important step
#============================
# select df to use
my_data = fp_adults
# clear unnecessary variables
rm(all_df)
rm(all_df, adult_df, fp_adults_na)
########################################################################
#=========
# sam
#=========
sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T)
sam_cols_i = str_extract(colnames(adult_df), sam_regex) # not boolean
#sam_cols_b = colnames(adult_df)%in%sam_cols_i # boolean
sam_cols_i = str_extract(colnames(my_data), sam_regex) # not boolean
#sam_cols_b = colnames(my_data)%in%sam_cols_i # boolean
sam_cols = colnames(adult_df)[colnames(adult_df)%in%sam_cols_i]
sam_cols = colnames(my_data)[colnames(my_data)%in%sam_cols_i]
# this contains log columns + daysamp_samXX: omitting these
sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T)
@ -48,7 +55,7 @@ cat("Extracting SAM cols + metadata_cols")
if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){
cat("Extracing", length(sam_cols_to_extract), "columns for sam")
sam_df = adult_df[, sam_cols_to_extract]
sam_df = my_data[, sam_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns"
@ -61,10 +68,10 @@ colnames_sam_df = colnames(sam_df); colnames_sam_df
# serum
#=========
serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T)
serum_cols_i = str_extract(colnames(adult_df), serum_regex) # not boolean
#serum_cols_b = colnames(adult_df)%in%serum_cols_i # boolean
serum_cols_i = str_extract(colnames(my_data), serum_regex) # not boolean
#serum_cols_b = colnames(my_data)%in%serum_cols_i # boolean
serum_cols = colnames(adult_df)[colnames(adult_df)%in%serum_cols_i]
serum_cols = colnames(my_data)[colnames(my_data)%in%serum_cols_i]
# this contains log columns + dayserump_serumXX: omitting these
serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T)
@ -88,7 +95,7 @@ cat("Extracting SERUM cols + metadata_cols")
if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){
cat("Extracing", length(serum_cols_to_extract), "columns for serum")
serum_df = adult_df[, serum_cols_to_extract]
serum_df = my_data[, serum_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns"
@ -101,10 +108,10 @@ colnames_serum_df = colnames(serum_df); colnames_serum_df
# npa
#=========
npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T)
npa_cols_i = str_extract(colnames(adult_df), npa_regex) # not boolean
#npa_cols_b = colnames(adult_df)%in%npa_cols_i # boolean
npa_cols_i = str_extract(colnames(my_data), npa_regex) # not boolean
#npa_cols_b = colnames(my_data)%in%npa_cols_i # boolean
npa_cols = colnames(adult_df)[colnames(adult_df)%in%npa_cols_i]
npa_cols = colnames(my_data)[colnames(my_data)%in%npa_cols_i]
# this contains log columns + daynpap_npaXX: omitting these
npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T)
@ -128,7 +135,7 @@ cat("Extracting NPA cols + metadata_cols")
if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){
cat("Extracing", length(npa_cols_to_extract), "columns for npa")
npa_df = adult_df[, npa_cols_to_extract]
npa_df = my_data[, npa_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns"
@ -166,21 +173,21 @@ for (i in extra_cols){
}
}
tail(colnames_check_f)
# write file?
quick_check = as.data.frame(cbind(metadata_all$mosaic
, metadata_all$adult
, metadata_all$age
, metadata_all$obesity
, metadata_all$obese2
))
colnames(quick_check) = c("mosaic", "adult", "age", "obesity", "obese2")
##########################################################################
# LF data
# LF data
##########################################################################
cols_to_omit = c("adult", "obese2"
, "height", "height_unit", "weight"
, "weight_unit", "visual_est_bmi", "bmi_rating")
cols_to_omit = c("adult"
#, "obese2"
#, "height", "height_unit", "weight"
#, "weight_unit", "visual_est_bmi", "bmi_rating"
)
pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
ncols_omitted
#==============
# lf data: sam
@ -198,11 +205,11 @@ pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -249,11 +256,11 @@ serum_wf = serum_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -296,11 +303,11 @@ npa_wf = npa_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
, "\nGot:",length(pivot_cols) )
quit()
}
@ -333,7 +340,7 @@ if (
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
rm(adult_df)
rm(my_data)
rm(colnames_check)
rm(i, j
#, expected_cols
@ -344,3 +351,4 @@ rm(sam_df_adults, serum_df_adults, npa_df_adults)
# rm df
rm(sam_df, serum_df, npa_df)
rm(colnames_check_f, fp_adults)