ML_AI_training/MultClassPipe3_CALL.py

99 lines
4.2 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
#%% Data
X = all_df_wtgt[numerical_FN+categorical_FN]
y = all_df_wtgt[drug]
#y = all_df_wtgt['dst_mode']
#%% variables
#%% MultClassPipeSKFCV: function call()
mm_skf_scoresD = MultClassPipeSKFCV(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv)
mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD)
mm_skf_scores_df_all
mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0)
mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results
baseline_BT = mm_skf_scores_df_all.filter(like='bts_', axis=0)
#%%
mm_skf_scoresD2 = MultClassPipeSKFCV(input_df = X_sm
, target = y_sm
, var_type = 'mixed'
, skf_cv = skf_cv)
sm_all = pd.DataFrame(mm_skf_scoresD2)
sm_df_CT = sm_all.filter(like='test_', axis=0)
sm_df_BT = sm_all.filter(like='bts_', axis=0)
#%%
mm_skf_scoresD3 = MultClassPipeSKFCV(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_CT = ros_all.filter(like='test_', axis=0)
ros_BT = ros_all.filter(like='bts_', axis=0)
#--------- combined
mm_skf_scoresD3v2 = MultClassPipeSKFCV(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD3v2)
rouC_CT = ros_all.filter(like='test_', axis=0)
rouC_BT = ros_all.filter(like='bts_', axis=0)
#%%
mm_skf_scoresD4 = MultClassPipeSKFCV(input_df = X_rus
, target = y_rus
, var_type = 'numerical'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_CT = rus_all.filter(like='test_', axis=0)
rus_BT = rus_all.filter(like='bts_' , axis=0)
#%%
mm_skf_scoresD5 = MultClassPipeSKFCV(input_df = X_enn
, target = y_enn
, var_type = 'numerical'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
enn_all = pd.DataFrame(mm_skf_scoresD5)
enn_CT = enn_all.filter(like='test_', axis=0)
enn_BT = enn_all.filter(like='bts_', axis=0)
#%%
mm_skf_scoresD6 = MultClassPipeSKFCV(input_df = X_renn
, target = y_renn
, var_type = 'numerical'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
renn_all = pd.DataFrame(mm_skf_scoresD6)
renn_CT = renn_all.filter(like='test_', axis=0)
renn_BT = renn_all.filter(like='bts_', axis=0)
#%%: with categorical values + oversampling
mm_skf_scoresD7 = MultClassPipeSKFCV(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = rskf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_CT = smnc_all.filter(like='test_', axis=0)
smnc_BT = smnc_all.filter(like='bts_', axis=0)