ML_AI_training/earlier_versions/my_datap8.py

118 lines
No EOL
3.4 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 5 12:57:32 2022
@author: tanu
"""
#%%
# data, etc for now comes from my_data6.py and/or my_data5.py
#%% try combinations
#import sys, os
#os.system("imports.py")
#%%
seed = 42
features_to_encode = list(X_train.select_dtypes(include = ['object']).columns)
col_trans = make_column_transformer(
(OneHotEncoder(),features_to_encode),
remainder = "passthrough"
)
rf_classifier = RandomForestClassifier(
min_samples_leaf=50,
n_estimators=150,
bootstrap=True,
oob_score=True,
n_jobs=-1,
random_state=seed,
max_features='auto')
pipe = make_pipeline(col_trans, rf_classifier)
pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_test)
#%%
all_features_df.shape
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
target1,
test_size = 0.33,
random_state = 42)
preprocessor = ColumnTransformer(
transformers=[
('num', MinMaxScaler() , numerical_features_df)
,('cat', OneHotEncoder(), categorical_features_df)])
seed = 42
rf_classifier = RandomForestClassifier(
min_samples_leaf=50,
n_estimators=150,
bootstrap=True,
oob_score=True,
n_jobs=-1,
random_state=seed,
max_features='auto')
preprocessor.fit(all_features_df)
preprocessor.transform(all_features_df)
model = Pipeline(steps = [
('preprocess', preprocessor)
,('regression',linear_model.LogisticRegression())
])
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
y_pred
def precision(y_true,y_pred):
return precision_score(y_true,y_pred,pos_label = 1)
def recall(y_true,y_pred):
return recall_score(y_true, y_pred, pos_label = 1)
def f1(y_true,y_pred):
return f1_score(y_true, y_pred, pos_label = 1)
acc = make_scorer(accuracy_score)
prec = make_scorer(precision)
rec = make_scorer(recall)
f1 = make_scorer(f1)
output = cross_validate(model, X_train, y_train
, scoring = {'acc' : acc
,'prec': prec
,'rec' : rec
,'f1' : f1}
, cv = 10
, return_train_score = False)
pd.DataFrame(output).mean()
#%% with feature selection
preprocessor.fit(numerical_features_df)
preprocessor.transform(numerical_features_df)
model = Pipeline(steps = [
('preprocess', preprocessor)
,('regression',linear_model.LogisticRegression())
])
selector_logistic = RFECV(estimator = model
, cv = 10
, step = 1)
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df
, target1
, test_size = 0.33
, random_state = 42)
selector_logistic_xtrain = selector_logistic.fit_transform(X_trainN, y_trainN)
print(sel_rfe_logistic.get_support())
X_trainN.columns
print(sel_rfe_logistic.ranking_)