ML_AI_training/MultClassPipe3.py

189 lines
No EOL
7 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 4 15:25:33 2022
@author: tanu
"""
#%%
import os, sys
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from xgboost import XGBClassifier
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.model_selection import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
from statistics import mean, stdev, median, mode
#%%
rs = {'random_state': 42}
# Done: add preprocessing step with one hot encoder
# TODO: supply stratified K-fold cv train and test data
# TODO: get accuracy and other scores through K-fold cv
# Multiple Classification - Model Pipeline
def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical','mixed'], skf_splits = 10):
'''
@ param input_df: input features
@ type: df (gets converted to np.array for stratified Kfold, and helps identify names to apply column transformation)
@param y_outputF: target (or output) feature
@type: df or np.array
returns
multiple classification model scores
'''
# Determine categorical and numerical features
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
# Determine preprocessing steps ~ var_type
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
#%% Define classification models to run
log_reg = LogisticRegression(**rs)
nb = BernoulliNB()
knn = KNeighborsClassifier()
svm = SVC(**rs)
mlp = MLPClassifier(max_iter = 500, **rs)
dt = DecisionTreeClassifier(**rs)
et = ExtraTreesClassifier(**rs)
rf = RandomForestClassifier(**rs)
rf2 = RandomForestClassifier(
min_samples_leaf = 50,
n_estimators = 150,
bootstrap = True,
oob_score = True,
n_jobs = -1,
random_state = 42,
max_features = 'auto')
xgb = XGBClassifier(**rs, verbosity = 0)
clfs = [
('Logistic Regression' , log_reg)
, ('Naive Bayes' , nb)
, ('K-Nearest Neighbors', knn)
, ('SVM' , svm)
, ('MLP' , mlp)
, ('Decision Tree' , dt)
, ('Extra Trees' , et)
, ('Random Forest' , rf)
, ('Random Forest2' , rf2)
, ('XGBoost' , xgb)
]
skf = StratifiedKFold(n_splits = skf_splits
, shuffle = True
#, random_state = seed_skf
, **rs)
X_array = np.array(input_df)
Y = y_targetF
# Initialise score metrics list to store skf results
fscoreL = []
mccL = []
presL = []
recallL = []
accuL = []
roc_aucL = []
for train_index, test_index in skf.split(input_df, y_targetF):
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index]
# for train_index, test_index in skf.split(X_array, Y):
# print('\nSKF train index:', train_index
# , '\nSKF test index:', test_index)
# x_train_fold, x_test_fold = X_array[train_index], X_array[test_index]
# y_train_fold, y_test_fold = Y[train_index], Y[test_index]
clf_scores_df = pd.DataFrame()
for clf_name, clf in clfs:
print('\nRunning the following classification models'
, clf_name)
model_pipeline = Pipeline(steps=[('prep' , col_transform)
, ('classifier' , clf)])
# model_pipeline = Pipeline(steps=[('prep' , MinMaxScaler())
# , ('classifier' , clf)])
model_pipeline.fit(x_train_fold, y_train_fold)
y_pred_fold = model_pipeline.predict(x_test_fold)
#----------------
# Model metrics
#----------------
# F1-Score
fscore = f1_score(y_test_fold, y_pred_fold)
fscoreL.append(fscore)
fscoreM = mean(fscoreL)
# Matthews correlation coefficient
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
mccL.append(mcc)
mccM = mean(mccL)
# Precision
pres = precision_score(y_test_fold, y_pred_fold)
presL.append(pres)
presM = mean(presL)
# Recall
recall = recall_score(y_test_fold, y_pred_fold)
recallL.append(recall)
recallM = mean(recallL)
# Accuracy
accu = accuracy_score(y_test_fold, y_pred_fold)
accuL.append(accu)
accuM = mean(accuL)
# ROC_AUC
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
roc_aucL.append(roc_auc)
roc_aucM = mean(roc_aucL)
clf_scores_df = clf_scores_df.append({'Model' : clf_name
,'F1_score' : fscoreM
, 'MCC' : mccM
, 'Precision': presM
, 'Recall' : recallM
, 'Accuracy' : accuM
, 'ROC_curve': roc_aucM}
, ignore_index = True)
return clf_scores_df