ML_AI_training/my_datap7.py

207 lines
7.7 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 5 12:57:32 2022
@author: tanu
"""
import os, sys
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
from sklearn.metrics import classification_report
from sklearn.feature_selection import RFE
from sklearn.feature_selection import RFECV
#############################
# trying feature selection
#############################
#%%
model= Pipeline(steps = [
('pre', MinMaxScaler()),
('reg', LogisticRegression(class_weight = 'balanced'))])
def precision(y_true,y_pred):
return precision_score(y_true,y_pred,pos_label = 1)
def recall(y_true,y_pred):
return recall_score(y_true, y_pred, pos_label = 1)
def f1(y_true,y_pred):
return f1_score(y_true, y_pred, pos_label = 1)
acc = make_scorer(accuracy_score)
prec = make_scorer(precision)
rec = make_scorer(recall)
f1 = make_scorer(f1)
output = cross_validate(model, X_train, y_train
, scoring = {'acc' : acc
,'prec': prec
,'rec' : rec
,'f1' : f1}
, cv = 10
, return_train_score = False)
pd.DataFrame(output).mean()
#%%
# classification_repor: lowest scores but does it give numbers for all your classes!
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
f1_score(y_test, y_pred)
roc_auc_score (y_test, y_pred) # not sure!
#roc_curve(y_test, y_pred)
classification_report(y_test, y_pred)
target_names = {1:'Resistant', 0:'Sensitive'}
print(classification_report(y_test
, y_pred
#, target_names=y_test.map(target_names)
))
#%%NOT SURE!
from itertools import combinations
def train(X):
return cross_validate(model, X, y_train
#, scoring = make_scorer(accuracy_score)
, scoring = {'acc' : acc
,'prec' : prec
,'rec' : rec
,'f1' : f1}
, cv = 10
, return_train_score = False)
#, return_estimator = True)['test_score']
scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns, len(X_train.columns))]
means = [score.mean() for score in scores]
means
#%%
# TO TRY
https://rasbt.github.io/mlxtend/
# stackoverflow
# informative post
https://datascience.stackexchange.com/questions/937/does-scikit-learn-have-a-forward-selection-stepwise-regression-algorithm
https://datascience.stackexchange.com/questions/24405/how-to-do-stepwise-regression-using-sklearn/24447#24447
https://stats.stackexchange.com/questions/204141/difference-between-selecting-features-based-on-f-regression-and-based-on-r2
# 0.24 version, it supports
https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_24_0.html#new-sequentialfeatureselector-transformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html
#GridSearchCV
#ParameterGrid
#RandomizedSearchCV
#https://medium.com/analytics-vidhya/hyper-parameter-tuning-gridsearchcv-vs-randomizedsearchcv-499862e3ca5
#%% RFE: Feature selection in classification
# others in example
# https://towardsdatascience.com/feature-selection-techniques-for-classification-and-python-tips-for-their-application-10c0ddd7918b
# https://towardsdatascience.com/feature-selection-using-python-for-classification-problem-b5f00a1c7028
model_logistic = LogisticRegression(solver='lbfgs'
, multi_class = 'multinomial'
, max_iter = 1000)
model_logistic = LogisticRegression()
sel_rfe_logistic = RFE(estimator = model_logistic
, n_features_to_select = 4
, step = 1)
X_train_rfe_logistic = sel_rfe_logistic.fit_transform(X_train, y_train)
print(sel_rfe_logistic.get_support())
print(sel_rfe_logistic.ranking_)
#%% RFECV
# https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
target = target1
target = target3
target = target4
X_train, X_test, y_train, y_test = train_test_split(X_vars1,
target,
test_size = 0.33,
random_state = 42)
X_train, X_test, y_train, y_test = train_test_split(X_vars2,
target,
test_size = 0.33,
random_state = 42)
X_train, X_test, y_train, y_test = train_test_split(X_vars3,
target,
test_size = 0.33,
random_state = 42)
X_train, X_test, y_train, y_test = train_test_split(X_vars5,
target,
test_size = 0.33,
random_state = 42)
X_train, X_test, y_train, y_test = train_test_split(X_vars11,
target,
test_size = 0.33,
random_state = 42)
model_logistic2 = LogisticRegression()
sel_rfe_logistic = RFECV(estimator = model_logistic2
, cv = 10
, step = 1)
X_train_rfe_logistic = sel_rfe_logistic.fit_transform(X_train, y_train)
print(sel_rfe_logistic.get_support())
X_train.columns
print(sel_rfe_logistic.ranking_)
#%%
# TODO: imputation
# Find out the best way to impute values!
#from sklearn.impute import SimpleImputer
# https://towardsdatascience.com/whats-the-best-way-to-handle-nan-values-62d50f738fc
#KNN and MICE
my_df2 = pd.read_csv(infile_ml1)
genomicF = ['af'
, 'beta_logistic'
, 'or_logistic'
, 'pval_logistic'
, 'se_logistic'
, 'zval_logistic'
, 'ci_low_logistic'
, 'ci_hi_logistic'
, 'or_mychisq'
, 'log10_or_mychisq'
, 'or_fisher'
, 'pval_fisher'
, 'neglog_pval_fisher'
, 'ci_low_fisher'
, 'ci_hi_fisher'
, 'est_chisq'
, 'pval_chisq']
# X_genomicF = ['af'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher']
my_df2[genomicF].isna().sum()
my_df2[genomicF] = my_df2[genomicF].fillna(value='unknown')