ML_AI_training/earlier_versions/practice_cv.py

244 lines
7.8 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import KFold
wine = load_wine()
X_train, y_train = wine.data, wine.target
model = Pipeline([
('pre', StandardScaler()),
('knn', KNeighborsClassifier())
])
model.fit(X_train,y_train)
from sklearn.model_selection import cross_validate
val = cross_validate(model,X_train,y_train, cv = 10)
val['test_score'].mean()
my_mcc = make_scorer({'mcc':make_scorer(matthews_corrcoef})
# for scoring in ({'accuracy' : make_scorer(accuracy_score)
# , 'fscore' : make_scorer(f1_score)
# , 'mcc' : make_scorer(matthews_corrcoef)
# , 'precision' : make_scorer(precision_score)
# , 'recall' : make_scorer(recall_score)
# , 'roc_auc' : make_scorer(roc_auc_score)
# , 'jaccard' : make_scorer(jaccard_score)
# }
# ,'accuracy', 'fscore', 'MCC', 'Precision', 'Recall', 'ROC_AUC', 'jaccard'):
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score)
, 'mcc' : make_scorer(matthews_corrcoef)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score)
#, 'jaccard' : make_scorer(jaccard_score)
})
val2 = cross_validate(model,X_train,y_train, cv = 10
, scoring=('accuracy', 'f1', 'precision', 'recall', 'roc_auc' )
#, scoring=scoring_fn
, return_train_score=False)
val2
print(val2['test_f1'])
print(mean(val2['test_accuracy']))
print(mean(val2['test_f1']))
#print(mean(val2['train_f1']))
print(mean(val2['test_precision']))
#print(mean(val2['train_precision']))
print(mean(val2['test_recall']))
print(mean(val2['test_roc_auc']))
#%%
val3 = cross_validate(model
, X_train
, y_train
, cv = 10
, scoring = scoring_fn
, return_train_score=False)
val3
print(mean(val3['test_accuracy']))
print(mean(val3['test_fscore']))
print(mean(val3['test_mcc']))
print(mean(val3['test_precision']))
print(mean(val3['test_recall']))
print(mean(val3['test_roc_auc'])) # differs
#======================
# with CV.split
scores = []
scores
#best_svr = SVR(kernel='rbf')
model = Pipeline([
('pre', StandardScaler()),
('knn', KNeighborsClassifier())
])
cv = KFold(n_splits=10
#, random_state=42
#, shuffle=True)
)
for train_index, test_index in cv.split(num_df_wtgt[numerical_FN]
, num_df_wtgt['mutation_class']):
#print("Train Index: ", train_index, "\n")
#print("Test Index: ", test_index)
X_train, X_test, y_train, y_test = num_df_wtgt[numerical_FN].iloc[train_index], num_df_wtgt[numerical_FN].iloc[test_index], num_df_wtgt['mutation_class'].iloc[train_index], num_df_wtgt['mutation_class'].iloc[test_index]
model.fit(X_train, y_train)
scores.append(model.score(X_test, y_test))
mean(scores)
################
scores_skf = []
skf = StratifiedKFold(n_splits = 10
#, shuffle = True
#, **r
)
for train_index, test_index in skf.split(num_df_wtgt[numerical_FN]
, num_df_wtgt['mutation_class']):
#print("Train Index: ", train_index, "\n")
#print("Test Index: ", test_index)
X_train, X_test, y_train, y_test = num_df_wtgt[numerical_FN].iloc[train_index], num_df_wtgt[numerical_FN].iloc[test_index], num_df_wtgt['mutation_class'].iloc[train_index], num_df_wtgt['mutation_class'].iloc[test_index]
model.fit(X_train, y_train)
scores_skf.append(model.score(X_test, y_test))
mean(scores_skf)
val = cross_validate(model, X_train,y_train , cv = 10)
val['test_score'].mean()
#%% compare loopity loop vs CV with SKF
rs = {'random_state': 42}
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
, num_df_wtgt['mutation_class']
, test_size = 0.33
, **rs
, shuffle = True
, stratify = num_df_wtgt['mutation_class'])
log_reg = LogisticRegression(**rs)
nb = BernoulliNB()
knn = KNeighborsClassifier()
svm = SVC(**rs)
model_single_pipeline = Pipeline([
('pre', MinMaxScaler())
, ('model', log_reg)
#, ('model', nb)
#, ('model', knn)
])
skf_cv = cross_validate(model_single_pipeline
#, X_train
#, y_train
, num_df_wtgt[numerical_FN]
, num_df_wtgt['mutation_class']
, cv = 10
, scoring = scoring_fn
, return_train_score=True)
skf_cv
print(round(mean(skf_cv['test_accuracy']),2))
print(round(mean(skf_cv['test_fscore']),2))
print(round(mean(skf_cv['test_mcc']),2))
print(round(mean(skf_cv['test_precision']),2))
print(round(mean(skf_cv['test_recall']),2))
print(round(mean(skf_cv['test_roc_auc']),2)) # differs
# %% Extracting skf_cv mean values and assiging to a dict
models_single = [
('Logistic Regression' , log_reg)
#, ('Naive Bayes' , nb)
#, ('K-Nearest Neighbors', knn)
# , ('SVM' , svm)
]
foo_single = {}
for model_name, model in models_single:
print(model_name)
#model_name_dict = {'model_name': model_name}
foo_single[model_name] = {}
for key, value in skf_cv.items():
print('\nkey:', key, '\nvalue:', value)
print('\nmean value:', mean(value))
foo_single[model_name][key] = round(mean(value),2)
pp.pprint(foo_single)
foo_single_df = pd.DataFrame(foo_single)
foo_single_df
foo_single_df.filter(like='test_', axis=0)
# ONLY for a single score
cval_score = cross_val_score(model
, num_df_wtgt[numerical_FN]
, num_df_wtgt['mutation_class']
, scoring = 'f1_macro'
, cv=10)
print(cval_score)
print(round(mean(cval_score), 2))
# %% Running multiple model with CV
log_reg = LogisticRegression(**rs)
nb = BernoulliNB()
knn = KNeighborsClassifier()
svm = SVC(**rs)
models = [
('Logistic Regression' , log_reg)
, ('Naive Bayes' , nb)
, ('K-Nearest Neighbors', knn)
, ('SVM' , svm)
]
foo = {}
for model_name, model_fn in models:
# print('\nModel_name:', model_name
# , '\nModel func:', model_fn
# , '\nList of models:', models)
model_pipeline = Pipeline([
('pre' , MinMaxScaler())
, ('model' , model_fn)])
print('Running model pipeline:', model_pipeline)
skf_cv = cross_validate(model_pipeline
, X_train
, y_train
, cv = 10
, scoring = scoring_fn
, return_train_score = True)
foo[model_name] = {}
for key, value in skf_cv.items():
print('\nkey:', key, '\nvalue:', value)
print('\nmean value:', mean(value))
foo[model_name][key] = round(mean(value),2)
pp.pprint(foo)
# construtc df
foo_df = pd.DataFrame(foo)
foo_df
scores_df = foo_df.filter(like='test_', axis=0)
a = pd.DataFrame(foo)
b = pd.DataFrame.from_dict(foo)
c = pd.DataFrame.from_records(foo)