ML_AI_training/uq_ml_models/UQ_ABC.py

133 lines
4.2 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 18 06:03:24 2022
@author: tanu
"""
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
class ClfSwitcher(BaseEstimator):
def __init__(
self,
estimator = SGDClassifier(),
):
"""
A Custom BaseEstimator that can switch between classifiers.
:param estimator: sklearn object - The classifier
"""
self.estimator = estimator
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
return self
def predict(self, X, y=None):
return self.estimator.predict(X)
def predict_proba(self, X):
return self.estimator.predict_proba(X)
def score(self, X, y):
return self.estimator.score(X, y)
parameters = [
{
'clf__estimator': [AdaBoostClassifier(**rs)]
, 'clf__estimator__n_estimators': [none, 1, 2]
, 'clf__estimator__base_estiamtor' : ['None', 1*SVC(), 1*KNeighborsClassifier()]
#, 'clf__estimator___splitter' : ["best", "random"]
}
]
# Create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler()),
('clf', ClfSwitcher()),
])
# Grid search i.e hyperparameter tuning and refitting on mcc
gscv_abc = GridSearchCV(pipeline
, parameters
#, scoring = 'f1', refit = 'f1'
, scoring = mcc_score_fn, refit = 'mcc'
, cv = skf_cv
, **njobs
, return_train_score = False
, verbose = 3)
# Fit
gscv_abc_fit = gscv_abc.fit(X, y)
gscv_abc_fit_be_mod = gscv_abc_fit.best_params_
gscv_abc_fit_be_res = gscv_abc_fit.cv_results_
print('Best model:\n', gscv_abc_fit_be_mod)
print('Best models score:\n', gscv_abc_fit.best_score_, ':' , round(gscv_abc_fit.best_score_, 2))
print('\nMean test score from fit results:', round(mean(gscv_abc_fit_be_re['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(np.nanmean(gscv_abc_fit_be_res['mean_test_mcc']),2))
######################################
# Blind test
######################################
# See how it does on the BLIND test
#print('\nBlind test score, mcc:', )
test_predict = gscv_abc_fit.predict(X_bts)
print(test_predict)
print(np.array(y_bts))
y_btsf = np.array(y_bts)
print(accuracy_score(y_btsf, test_predict))
print(matthews_corrcoef(y_btsf, test_predict))
# create a dict with all scores
abc_bts_dict = {#'best_model': list(gscv_abc_fit_be_mod.items())
'bts_fscore' : None
, 'bts_mcc' : None
, 'bts_precision': None
, 'bts_recall' : None
, 'bts_accuracy' : None
, 'bts_roc_auc' : None
, 'bts_jaccard' : None }
abc_bts_dict
abc_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
abc_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
abc_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
abc_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
abc_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
abc_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
abc_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
abc_bts_dict
# Create a df from dict with all scores
pd.DataFrame.from_dict(abc_bts_dict, orient = 'index', columns = 'best_model')
abc_bts_df = pd.DataFrame.from_dict(abc_bts_dict,orient = 'index')
abc_bts_df.columns = ['Logistic_Regression']
print(abc_bts_df)
# Create df with best model params
model_params = pd.Series(['best_model_params', list(gscv_abc_fit_be_mod.items() )])
model_params_df = model_params.to_frame()
model_params_df
model_params_df.columns = ['Logistic_Regression']
model_params_df.columns
# Combine the df of scores and the best model params
abc_bts_df.columns
abc_output = pd.concat([model_params_df, abc_bts_df], axis = 0)
abc_output
# Format the combined df
# Drop the best_model_params row from abc_output
abc_df = abc_output.drop([0], axis = 0)
abc_df
#FIXME: tidy the index of the formatted df
###############################################################################