ML_AI_training/my_data5.py
2022-03-04 19:15:49 +00:00

172 lines
No EOL
5 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 3 17:08:18 2022
@author: tanu
"""
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import os
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
import pandas as pd
#%%
homedir = os.path.expanduser("~")
os.chdir(homedir + "/git/ML_AI_training/test_data")
#gene 'pncA'
#drug = 'pyrazinamide'
#==============
# directories
#==============
datadir = homedir + '/git/Data/'
indir = datadir + drug + '/input/'
outdir = datadir + drug + '/output/'
#=======
# input
#=======
# this needs to be merged_df2 or merged_df3?
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
my_df = pd.read_csv(infile_ml1)
my_df.dtypes
my_df_cols = my_df.columns
gene_baiscL = ['pnca']
geneL_naL = ['gid', 'rpob']
geneL_ppi2L = ['alr', 'embb', 'katg', 'rpob']
#%%============================================================================
# GET Y
# Y = my_df.loc[:,drug] #has NA
dm_om_map = {'DM': 1, 'OM': 0}
my_df['resistance'] = my_df['mutation_info_labels'].map(dm_om_map)
# sanity check
my_df['resistance'].value_counts()
my_df['mutation_info_labels'].value_counts()
Y = my_df['resistance']
# GET X
cols = my_df.columns
X_stability = my_df[['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2']]
X_evol = my_df[['consurf_score'
, 'snap2_score'
, 'snap2_accuracy_pc']]
X_str = my_df[['asa'
, 'rsa'
, 'kd_values'
, 'rd_values']]
#%% try combinations
X_vars = X_stability
X_vars = X_evol
X_vars = X_str
X_vars = pd.concat([X_stability, X_evol, X_str], axis = 1)
X_vars = pd.concat([X_stability, X_evol], axis = 1)
X_vars = pd.concat([X_stability, X_str], axis = 1)
X_vars = pd.concat([X_evol, X_str], axis = 1)
#%%
X_vars.shape[1]
# TODO: stratified cross validate
# Train-test Split
rs = {'random_state': 42}
X_train, X_test, y_train, y_test = train_test_split(X_vars,
Y,
test_size = 0.33,
random_state = 42)
# Classification - Model Pipeline
def modelPipeline(X_train, X_test, y_train, y_test):
log_reg = LogisticRegression(**rs)
nb = BernoulliNB()
knn = KNeighborsClassifier()
svm = SVC(**rs)
mlp = MLPClassifier(max_iter=500, **rs)
dt = DecisionTreeClassifier(**rs)
et = ExtraTreesClassifier(**rs)
rf = RandomForestClassifier(**rs)
xgb = XGBClassifier(**rs, verbosity=0)
clfs = [
('Logistic Regression', log_reg),
('Naive Bayes', nb),
('K-Nearest Neighbors', knn),
('SVM', svm),
('MLP', mlp),
('Decision Tree', dt),
('Extra Trees', et),
('Random Forest', rf),
('XGBoost', xgb)
]
pipelines = []
scores_df = pd.DataFrame(columns=['Model', 'F1_Score', 'Precision', 'Recall', 'Accuracy', 'ROC_AUC'])
for clf_name, clf in clfs:
pipeline = Pipeline(steps=[
('scaler', MinMaxScaler()),
('classifier', clf)
]
)
pipeline.fit(X_train, y_train)
# Model predictions
y_pred = pipeline.predict(X_test)
# F1-Score
fscore = f1_score(y_test, y_pred)
# Precision
pres = precision_score(y_test, y_pred)
# Recall
rcall = recall_score(y_test, y_pred)
# Accuracy
accu = accuracy_score(y_test, y_pred)
# ROC_AUC
roc_auc = roc_auc_score(y_test, y_pred)
pipelines.append(pipeline)
scores_df = scores_df.append({
'Model' : clf_name,
'F1_Score' : fscore,
'Precision' : pres,
'Recall' : rcall,
'Accuracy' : accu,
'ROC_AUC' : roc_auc
},
ignore_index = True)
return pipelines, scores_df
modelPipeline(X_train, X_test, y_train, y_test)