ML_AI_training/earlier_versions/UQ_RF.py

137 lines
No EOL
4.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 18 06:03:24 2022
@author: tanu
"""
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
class ClfSwitcher(BaseEstimator):
def __init__(
self,
estimator = SGDClassifier(),
):
"""
A Custom BaseEstimator that can switch between classifiers.
:param estimator: sklearn object - The classifier
"""
self.estimator = estimator
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
return self
def predict(self, X, y=None):
return self.estimator.predict(X)
def predict_proba(self, X):
return self.estimator.predict_proba(X)
def score(self, X, y):
return self.estimator.score(X, y)
parameters = [
{
'clf__estimator': [RandomForestClassifier(**rs
, **njobs
, bootstrap = True
, oob_score = True)],
'clf__estimator__max_depth': [4, 6, 8, 10, 12, 16, 20, None]
, 'clf__estimator__class_weight':['balanced','balanced_subsample']
, 'clf__estimator__n_estimators': [10, 25, 50, 100]
, 'clf__estimator__criterion': ['gini', 'entropy']#, 'log_loss']
#, 'clf__estimator__max_features': ['auto', 'sqrt']
, 'clf__estimator__min_samples_leaf': [1, 2, 3, 4, 5, 10]
, 'clf__estimator__min_samples_split': [2, 5, 15, 20]
}
# {
# 'clf__estimator': [RandomForestClassifier(**rs
# , **njobs
# , bootstrap = True
# , oob_score = True)],
# 'clf__estimator__max_depth': [ 6, 8, 10 ]
# , 'clf__estimator__class_weight':['balanced_subsample']
# , 'clf__estimator__n_estimators': [10]
# , 'clf__estimator__criterion': ['entropy']
# #, 'clf__estimator__max_features': ['auto', 'sqrt']
# , 'clf__estimator__min_samples_leaf': [2, 8]
# , 'clf__estimator__min_samples_split': [20]
# }
]
# Create pipeline
pipeline = Pipeline([
('pre', MinMaxScaler()),
('clf', ClfSwitcher()),
])
# Grid search i.e hyperparameter tuning and refitting on mcc
gscv_rf = GridSearchCV(pipeline
, parameters
#, scoring = 'f1', refit = 'f1'
, scoring = mcc_score_fn, refit = 'mcc'
, cv = skf_cv
, **njobs
, return_train_score = False
, verbose = 3)
# Fit
gscv_rf_fit_be = gscv_rf.fit(X, y)
print('Best model:\n', gscv_rf.best_params_)
gscv_rf_fit_be.best_params_
print('Best models score:\n', gscv_rf_fit_be.best_score_, ':' , round(gscv_rf_fit_be.best_score_, 2))
# See how it does on the BLIND test
#print('\nBlind test score, mcc:', )
test_predict = gscv_rf_fit_be.predict(X_bts)
print(test_predict)
print(np.array(y_bts))
y_btsf = np.array(y_bts)
#gscv_rf_fit_be.score(test_predict, y_btsf)
from sklearn.metrics import accuracy_score
from sklearn.metrics import matthews_corrcoef
print(accuracy_score(y_btsf, test_predict))
print(matthews_corrcoef(y_btsf, test_predict))
print(matthews_corrcoef(test_predict, y_btsf))
print(accuracy_score(test_predict, y_btsf))
#check_score = f1_score(y, gscv_rf.predict(X))
#check_score # should be the same as the best score when the same metric used!
# mod_pred = gscv_rf.predict(X_test)
# fscore = f1_score(y_test, mod_pred)
# fscore
gscv_rf_be_mod = gscv_rf.best_params_
print(gscv_rf_be_mod)
gscv_rf_fit_be_res = gscv_rf_fit_be.cv_results_
#print('\nMean test score from fit results:', round(mean(gscv_rf_fit_be_res['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(np.nanmean(gscv_rf_fit_be_res['mean_test_mcc']),2))
# /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427
# : FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3.
# To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter
# as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
# warn(
# ALL
# {'clf__estimator': RandomForestClassifier(class_weight='balanced_subsample', criterion='entropy',
# max_depth=6, max_features='auto', min_samples_leaf=2,
# min_samples_split=20, n_estimators=10, n_jobs=10,
# oob_score=True, random_state=42)
# , 'clf__estimator__class_weight': 'balanced_subsample'
# , 'clf__estimator__criterion': 'entropy'
# , 'clf__estimator__max_depth': 6
# , 'clf__estimator__max_features': 'auto'
# , 'clf__estimator__min_samples_leaf': 2
# , 'clf__estimator__min_samples_split': 20
# , 'clf__estimator__n_estimators': 10}
#%%