188 lines
No EOL
6.6 KiB
Python
188 lines
No EOL
6.6 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed May 18 06:03:24 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
#cv = rskf_cv
|
|
cv = skf_cv
|
|
|
|
# QuadraticDiscriminantAnalysis: Feature Selelction + GridSearch CV + Pipeline
|
|
###############################################################################
|
|
# Define estimator
|
|
estimator = QuadraticDiscriminantAnalysis(**rs)
|
|
|
|
# Define pipleline with steps
|
|
pipe_qda = Pipeline([
|
|
('pre', MinMaxScaler())
|
|
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
|
|
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
|
, ('clf', estimator)
|
|
])
|
|
|
|
# Define hyperparmeter space to search for
|
|
param_grid_qda = [
|
|
{
|
|
'fs__min_features_to_select' : [1,2]
|
|
# , 'fs__cv': [cv]
|
|
},
|
|
|
|
{
|
|
# 'clf': [QuadraticDiscriminantAnalysis()],
|
|
'clf__priors': [None]
|
|
|
|
}
|
|
]
|
|
|
|
# Define GridSearch CV
|
|
gscv_fs = GridSearchCV(pipe_qda
|
|
, param_grid_qda
|
|
, cv = cv
|
|
, scoring = mcc_score_fn
|
|
, refit = 'mcc'
|
|
, verbose = 3
|
|
, return_train_score = True
|
|
, **njobs)
|
|
###############################################################################
|
|
#------------------------------
|
|
# Fit gscv containing pipeline
|
|
#------------------------------
|
|
gscv_fs.fit(X, y)
|
|
|
|
#Fitting 10 folds for each of 4 candidates, totalling 80 fits
|
|
# QUESTION: HOW??
|
|
gscv_fs.best_params_
|
|
gscv_fs.best_score_
|
|
|
|
# Training best score corresponds to the max of the mean_test<score>
|
|
train_bscore = round(gscv_fs.best_score_, 2); train_bscore
|
|
print('\nTraining best score (MCC):', train_bscore)
|
|
round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
|
|
|
|
# Training results
|
|
gscv_tr_resD = gscv_fs.cv_results_
|
|
mod_refit_param = gscv_fs.refit
|
|
|
|
# sanity check
|
|
if train_bscore == round(gscv_tr_resD['mean_test_mcc'].max(),2):
|
|
print('\nVerified training score (MCC):', train_bscore )
|
|
else:
|
|
print('\nTraining score could not be internatlly verified. Please check training results dict')
|
|
|
|
# Blind test: REAL check!
|
|
tp = gscv_fs.predict(X_bts)
|
|
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, tp),2))
|
|
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, tp),2))
|
|
|
|
############
|
|
# info extraction
|
|
############
|
|
# gives input vals??
|
|
gscv_fs._check_n_features
|
|
|
|
# gives gscv params used
|
|
gscv_fs._get_param_names()
|
|
|
|
# gives ??
|
|
gscv_fs.best_estimator_
|
|
gscv_fs.best_params_ # gives best estimator params as a dict
|
|
gscv_fs.best_estimator_._final_estimator # similar to above, doesn't contain max_iter
|
|
gscv_fs.best_estimator_.named_steps['fs'].get_support()
|
|
gscv_fs.best_estimator_.named_steps['fs'].ranking_ # array of ranks for the features
|
|
|
|
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.mean()
|
|
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
|
|
#gscv_fs.best_estimator_.named_steps['fs'].grid_scores_
|
|
|
|
###############################################################################
|
|
#============
|
|
# FS results
|
|
#============
|
|
# Now get the features out
|
|
all_features = gscv_fs.feature_names_in_
|
|
n_all_features = gscv_fs.n_features_in_
|
|
#all_features = gsfit.feature_names_in_
|
|
|
|
sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
|
|
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
|
|
|
|
# get model name
|
|
model_name = gscv_fs.best_estimator_.named_steps['clf']
|
|
b_model_params = gscv_fs.best_params_
|
|
|
|
print('\n========================================'
|
|
, '\nRunning model:'
|
|
, '\nModel name:', model_name
|
|
, '\n==============================================='
|
|
, '\nRunning feature selection with RFECV for model'
|
|
, '\nTotal no. of features in model:', len(all_features)
|
|
, '\nThese are:\n', all_features, '\n\n'
|
|
, '\nNo of features for best model: ', n_sf
|
|
, '\nThese are:', sel_features, '\n\n'
|
|
, '\nBest Model hyperparams:', b_model_params
|
|
)
|
|
|
|
###############################################################################
|
|
############################## OUTPUT #########################################
|
|
###############################################################################
|
|
#=========================
|
|
# Blind test: BTS results
|
|
#=========================
|
|
# Build the final results with all scores for a feature selected model
|
|
bts_predict = gscv_fs.predict(X_bts)
|
|
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, bts_predict),2))
|
|
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, bts_predict),2))
|
|
|
|
# create a dict with all scores
|
|
lr_btsD = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
|
'bts_fscore':None
|
|
, 'bts_mcc':None
|
|
, 'bts_precision':None
|
|
, 'bts_recall':None
|
|
, 'bts_accuracy':None
|
|
, 'bts_roc_auc':None
|
|
, 'bts_jaccard':None }
|
|
lr_btsD
|
|
lr_btsD['bts_fscore'] = round(f1_score(y_bts, bts_predict),2)
|
|
lr_btsD['bts_mcc'] = round(matthews_corrcoef(y_bts, bts_predict),2)
|
|
lr_btsD['bts_precision'] = round(precision_score(y_bts, bts_predict),2)
|
|
lr_btsD['bts_recall'] = round(recall_score(y_bts, bts_predict),2)
|
|
lr_btsD['bts_accuracy'] = round(accuracy_score(y_bts, bts_predict),2)
|
|
lr_btsD['bts_roc_auc'] = round(roc_auc_score(y_bts, bts_predict),2)
|
|
lr_btsD['bts_jaccard'] = round(jaccard_score(y_bts, bts_predict),2)
|
|
lr_btsD
|
|
|
|
#===========================
|
|
# Add FS related model info
|
|
#===========================
|
|
output_modelD = {'model_name': model_name
|
|
, 'model_refit_param': mod_refit_param
|
|
, 'Best_model_params': b_model_params
|
|
, 'n_all_features': n_all_features
|
|
, 'fs_method': gscv_fs.best_estimator_.named_steps['fs'] # FIXME: doesn't tell you which it has chosen
|
|
, 'fs_res_array': gscv_fs.best_estimator_.named_steps['fs'].get_support()
|
|
, 'fs_res_array_rank': gscv_fs.best_estimator_.named_steps['fs'].ranking_
|
|
, 'all_feature_names': all_features
|
|
, 'n_sel_features': n_sf
|
|
, 'sel_features_names': sel_features
|
|
, 'train_score (MCC)': train_bscore}
|
|
output_modelD
|
|
|
|
#========================================
|
|
# Update output_modelD with bts_results
|
|
#========================================
|
|
output_modelD.update(lr_btsD)
|
|
output_modelD
|
|
|
|
#========================================
|
|
# Write final output file
|
|
# https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file
|
|
#========================================
|
|
# output final dict as a json
|
|
# outFile = 'LR_FS.json'
|
|
# with open(outFile, 'w') as f:
|
|
# json.dump(output_modelD, f)
|
|
# #
|
|
# with open(file, 'r') as f:
|
|
# data = json.load(f) |