ML_AI_training/uq_ml_models/pnca_num_hy.txt

316 lines
16 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 20 00:36:17 2022
@author: tanu
"""
# pnca [ numerical ONLY + NO oversampling]
# LR: hyperparm
{'clf__estimator': LogisticRegression(penalty='l1', random_state=42, solver='saga'),
'clf__estimator__C': 1.0,
'clf__estimator__max_iter': 100,
'clf__estimator__penalty': 'l1',
'clf__estimator__solver': 'saga'}
Logistic_Regression
bts_fscore 0.70
bts_mcc 0.29
bts_precision 0.57
bts_recall 0.92
bts_accuracy 0.61
bts_roc_auc 0.61
bts_jaccard 0.54
# LR: FS + hyperparam
{'bts_fscore': 0.71,
'bts_mcc': 0.34,
'bts_precision': 0.61,
'bts_recall': 0.87,
'bts_accuracy': 0.65,
'bts_roc_auc': 0.65,
'bts_jaccard': 0.55}
#######################################################################
# RF: hyperparam [~45 min]
Best model:
{'clf__estimator': RandomForestClassifier(class_weight='balanced', max_depth=4, max_features=None,
min_samples_leaf=2, min_samples_split=15,
n_estimators=10, n_jobs=10, oob_score=True,
random_state=42), 'clf__estimator__class_weight': 'balanced', 'clf__estimator__criterion': 'gini', 'clf__estimator__max_depth': 4, 'clf__estimator__max_features': None, 'clf__estimator__min_samples_leaf': 2, 'clf__estimator__min_samples_split': 15, 'clf__estimator__n_estimators': 10}
Best models score:
0.3329374281771619 : 0.33
RF
bts_fscore 0.69
bts_mcc 0.37
bts_precision 0.67
bts_recall 0.72
bts_accuracy 0.68
bts_roc_auc 0.68
bts_jaccard 0.53
#######################################################################
# ABC: hyperparam
{'clf__estimator': AdaBoostClassifier(n_estimators=2, random_state=42),
'clf__estimator__n_estimators': 2}
ABC
1 [(clf__estimator, AdaBoostClassifier(n_estimat...
bts_fscore 0.71
bts_mcc 0.36
bts_precision 0.63
bts_recall 0.83
bts_accuracy 0.67
bts_roc_auc 0.67
bts_jaccard 0.56
#######################################################################
# BC: hyperparam
{'clf__estimator': BaggingClassifier(n_estimators=200, n_jobs=10, oob_score=True, random_state=42),
'clf__estimator__n_estimators': 200}
BC
0 best_model_params
1 [(clf__estimator, BaggingClassifier(n_estimato...
bts_fscore 0.72
bts_mcc 0.37
bts_precision 0.64
bts_recall 0.82
bts_accuracy 0.68
bts_roc_auc 0.68
bts_jaccard 0.56
#######################################################################
# BNB: hyperparam
{'clf__estimator': BernoulliNB(alpha=1, binarize=None),
'clf__estimator__alpha': 1,
'clf__estimator__binarize': None,
'clf__estimator__class_prior': None,
'clf__estimator__fit_prior': True}
BNB
1 [(clf__estimator, BernoulliNB(alpha=1, binariz...
bts_fscore 0.72
bts_mcc 0.35
bts_precision 0.6
bts_recall 0.92
bts_accuracy 0.65
bts_roc_auc 0.65
bts_jaccard 0.56
#######################################################################
# DT: hyperparam
{'clf__estimator': DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
max_depth=2, random_state=42),
'clf__estimator__class_weight': 'balanced',
'clf__estimator__criterion': 'entropy',
'clf__estimator__max_depth': 2,
'clf__estimator__max_features': None,
'clf__estimator__min_samples_leaf': 1,
'clf__estimator__min_samples_split': 2}
DT
1 [(clf__estimator, DecisionTreeClassifier(class...
bts_fscore 0.72
bts_mcc 0.42
bts_precision 0.69
bts_recall 0.76
bts_accuracy 0.71
bts_roc_auc 0.71
bts_jaccard 0.57
#######################################################################
# GBC: hyperparam
{'clf__estimator': GradientBoostingClassifier(learning_rate=0.01, max_depth=7, random_state=42,
subsample=0.5),
'clf__estimator__learning_rate': 0.01,
'clf__estimator__max_depth': 7,
'clf__estimator__n_estimators': 100,
'clf__estimator__subsample': 0.5}
GBC
1 [(clf__estimator, GradientBoostingClassifier(l...
bts_fscore 0.71
bts_mcc 0.33
bts_precision 0.6
bts_recall 0.88
bts_accuracy 0.64
bts_roc_auc 0.65
bts_jaccard 0.55
#######################################################################
# GNB: hyperparam
{'clf__estimator': GaussianNB(var_smoothing=0.006579332246575682),
'clf__estimator__priors': None,
'clf__estimator__var_smoothing': 0.006579332246575682}
GNB
1 [(clf__estimator, GaussianNB(var_smoothing=0.0...
bts_fscore 0.72
bts_mcc 0.46
bts_precision 0.73
bts_recall 0.71
bts_accuracy 0.73
bts_roc_auc 0.73
bts_jaccard 0.57
#######################################################################
# GPC: hyperparam
{'clf__estimator': GaussianProcessClassifier(kernel=1**2 * Matern(length_scale=1, nu=1.5),
random_state=42),
'clf__estimator__kernel': 1**2 * Matern(length_scale=1, nu=1.5)}
ConvergenceWarning: The optimal value found for dimension 0 of parameter k2__alpha is close to the specified upper bound 100000.0. Increasing the bound and calling fit again may find a better value.
warnings.warn(
GPC
1 [(clf__estimator, GaussianProcessClassifier(ke...
bts_fscore 0.73
bts_mcc 0.38
bts_precision 0.6
bts_recall 0.92
bts_accuracy 0.66
bts_roc_auc 0.66
bts_jaccard 0.58
#######################################################################
# KNN: hyperparam
Best model:
{'clf__estimator': KNeighborsClassifier(metric='euclidean', n_jobs=10, n_neighbors=11,
weights='distance'), 'clf__estimator__metric': 'euclidean', 'clf__estimator__n_neighbors': 11, 'clf__estimator__weights': 'distance'}
1 [(clf__estimator, KNeighborsClassifier(metric=...
bts_fscore 0.69
bts_mcc 0.26
bts_precision 0.58
bts_recall 0.85
bts_accuracy 0.62
bts_roc_auc 0.62
bts_jaccard 0.52
Best model:
{'clf__estimator': KNeighborsClassifier(metric='euclidean', n_jobs=10, n_neighbors=29), 'clf__estimator__metric': 'euclidean', 'clf__estimator__n_neighbors': 29, 'clf__estimator__weights': 'uniform'}
KNN
1 [(clf__estimator, KNeighborsClassifier(metric=...
bts_fscore 0.73
bts_mcc 0.37
bts_precision 0.6
bts_recall 0.92
bts_accuracy 0.65
bts_roc_auc 0.65
bts_jaccard 0.57
#######################################################################
# MLP: hyperparam
#constant lr, tried others as well, but comes back with constant
{'clf__estimator': MLPClassifier(hidden_layer_sizes=3, max_iter=500, random_state=42,
solver='lbfgs'),
'clf__estimator__hidden_layer_sizes': 3,
'clf__estimator__learning_rate': 'constant',
'clf__estimator__solver': 'lbfgs'}
1 [(clf__estimator, MLPClassifier(hidden_layer_s...
bts_fscore 0.71
bts_mcc 0.34
bts_precision 0.61
bts_recall 0.86
bts_accuracy 0.65
bts_roc_auc 0.65
bts_jaccard 0.55
#######################################################################
# QDA: hyperparam
Best model:
{'clf__estimator': QuadraticDiscriminantAnalysis()}
QDA
1 [(clf__estimator, QuadraticDiscriminantAnalysi...
bts_fscore 0.66
bts_mcc 0.33
bts_precision 0.67
bts_recall 0.65
bts_accuracy 0.67
bts_roc_auc 0.67
bts_jaccard 0.49
#######################################################################
# RC: hyperparam
Best model:
{'clf__estimator': RidgeClassifier(alpha=0.8, random_state=42)
, 'clf__estimator__alpha': 0.8}
Ridge Classifier
1 [(clf__estimator, RidgeClassifier(alpha=0.8, r...
bts_fscore 0.71
bts_mcc 0.31
bts_precision 0.59
bts_recall 0.88
bts_accuracy 0.64
bts_roc_auc 0.64
bts_jaccard 0.55
#######################################################################
# SVC: hyperparam
Best model:
{'clf__estimator': SVC(C=10, kernel='linear', random_state=42), 'clf__estimator__C': 10, 'clf__estimator__gamma': 'scale', 'clf__estimator__kernel': 'linear'}
SVC
1 [(clf__estimator, SVC(C=10, kernel='linear', r...
bts_fscore 0.71
bts_mcc 0.31
bts_precision 0.57
bts_recall 0.93
bts_accuracy 0.62
bts_roc_auc 0.62
bts_jaccard 0.55
Best model:
{'clf__estimator': SVC(C=10, gamma='auto', random_state=42), 'clf__estimator__C': 10, 'clf__estimator__gamma': 'auto', 'clf__estimator__kernel': 'rbf'}
Best models score:
SVC
1 [(clf__estimator, SVC(C=10, gamma='auto', rand...
bts_fscore 0.71
bts_mcc 0.32
bts_precision 0.58
bts_recall 0.93
bts_accuracy 0.63
bts_roc_auc 0.63
bts_jaccard 0.56
Best model:
{'clf__estimator': SVC(C=50, gamma='auto', kernel='sigmoid', random_state=42), 'clf__estimator__C': 50, 'clf__estimator__gamma': 'auto', 'clf__estimator__kernel': 'sigmoid'}
SVC
1 [(clf__estimator, SVC(C=50, gamma='auto', kern...
bts_fscore 0.72
bts_mcc 0.33
bts_precision 0.58
bts_recall 0.93
bts_accuracy 0.63
bts_roc_auc 0.63
bts_jaccard 0.56
#######################################################################
# XGB: hyperparam
Best model:
{'clf__estimator': XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=0.01, max_delta_step=None, max_depth=6,
max_features='auto', min_child_weight=None, min_samples_leaf=4,
missing=nan, monotone_constraints=None, n_estimators=100,
n_jobs=10, num_parallel_tree=None, predictor=None,
random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
validate_parameters=None, verbosity=None), 'clf__estimator__learning_rate': 0.01, 'clf__estimator__max_depth': 6, 'clf__estimator__max_features': 'auto', 'clf__estimator__min_samples_leaf': 4}
XGBoost
0 best_model_params
1 [(clf__estimator, XGBClassifier(base_score=Non...
bts_fscore 0.68
bts_mcc 0.31
bts_precision 0.63
bts_recall 0.73
bts_accuracy 0.65
bts_roc_auc 0.65
bts_jaccard 0.51