174 lines
No EOL
6.7 KiB
Python
Executable file
174 lines
No EOL
6.7 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Fri Mar 4 15:25:33 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
#%%
|
|
import os, sys
|
|
import pandas as pd
|
|
import numpy as np
|
|
import pprint as pp
|
|
import random
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
|
from sklearn.neural_network import MLPClassifier
|
|
from sklearn.pipeline import Pipeline
|
|
from xgboost import XGBClassifier
|
|
from sklearn.compose import ColumnTransformer
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
|
|
|
|
from sklearn.model_selection import cross_validate
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.model_selection import StratifiedKFold
|
|
|
|
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
|
from statistics import mean, stdev, median, mode
|
|
#%%
|
|
rs = {'random_state': 42}
|
|
njobs = {'n_jobs': 10}
|
|
|
|
# Done: add preprocessing step with one hot encoder
|
|
# TODO: supply stratified K-fold cv train and test dataskf
|
|
# TODO: get accuracy and other scores through K-fold cv
|
|
|
|
# Multiple Classification - Model Pipeline
|
|
def MultClassPipeSKFLoop(input_df, target, sel_cv, var_type = ['numerical','categorical','mixed']):
|
|
|
|
'''
|
|
@ param input_df: input features
|
|
@ type: df with input features WITHOUT the target variable
|
|
|
|
@param target: target (or output) feature
|
|
@type: df or np.array or Series
|
|
|
|
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
|
|
@type: int or StratifiedKfold()
|
|
|
|
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-hot encoder)
|
|
@type: list
|
|
|
|
returns
|
|
Dict containing multiple classification scores for each model and each Stratified Kfold
|
|
|
|
'''
|
|
# Determine categorical and numerical features
|
|
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
|
numerical_ix
|
|
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
|
categorical_ix
|
|
|
|
# Determine preprocessing steps ~ var_type
|
|
if var_type == 'numerical':
|
|
t = [('num', MinMaxScaler(), numerical_ix)]
|
|
|
|
if var_type == 'categorical':
|
|
t = [('cat', OneHotEncoder(), categorical_ix)]
|
|
|
|
if var_type == 'mixed':
|
|
t = [('cat', OneHotEncoder(), categorical_ix)
|
|
, ('num', MinMaxScaler(), numerical_ix)]
|
|
|
|
col_transform = ColumnTransformer(transformers = t
|
|
, remainder='passthrough')
|
|
|
|
#%% Define classification models to run
|
|
log_reg = LogisticRegression(**rs)
|
|
nb = BernoulliNB()
|
|
knn = KNeighborsClassifier()
|
|
svm = SVC(**rs)
|
|
mlp = MLPClassifier(max_iter = 500, **rs)
|
|
dt = DecisionTreeClassifier(**rs)
|
|
et = ExtraTreesClassifier(**rs)
|
|
rf = RandomForestClassifier(**rs)
|
|
rf2 = RandomForestClassifier(
|
|
min_samples_leaf = 50
|
|
, n_estimators = 150
|
|
, bootstrap = True
|
|
, oob_score = True
|
|
, **njobs
|
|
, **rs
|
|
, max_features = 'auto')
|
|
|
|
xgb = XGBClassifier(**rs, verbosity = 0, use_label_encoder = False)
|
|
classification_metrics = {
|
|
'F1_score': []
|
|
,'MCC': []
|
|
,'Precision': []
|
|
,'Recall': []
|
|
, 'Accuracy': []
|
|
,'ROC_AUC': []
|
|
}
|
|
models = [
|
|
('Logistic Regression' , log_reg)
|
|
, ('Naive Bayes' , nb)
|
|
, ('K-Nearest Neighbors', knn)
|
|
, ('SVM' , svm)
|
|
, ('MLP' , mlp)
|
|
, ('Decision Tree' , dt)
|
|
, ('Extra Trees' , et)
|
|
, ('Random Forest' , rf)
|
|
, ('Naive Bayes' , nb)
|
|
, ('Random Forest2' , rf2)
|
|
, ('XGBoost' , xgb)
|
|
]
|
|
|
|
# skf = StratifiedKFold(n_splits = 10
|
|
# #, shuffle = False, random_state= None)
|
|
# , shuffle = True,**rs)
|
|
|
|
fold_no = 1
|
|
fold_dict={}
|
|
|
|
for model_name, model in models:
|
|
fold_dict.update({ model_name: {}})
|
|
|
|
#scores_df = pd.DataFrame()
|
|
for train_index, test_index in sel_cv.split(input_df, target):
|
|
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
|
y_train_fold, y_test_fold = target.iloc[train_index], target.iloc[test_index]
|
|
#print("Fold: ", fold_no, len(train_index), len(test_index))
|
|
|
|
for model_name, model in models:
|
|
print("\nStart of model", model_name, "\nLoop no.", fold_no)
|
|
model_pipeline = Pipeline(steps=[('prep' , col_transform)
|
|
, ('classifier' , model)])
|
|
model_pipeline.fit(x_train_fold, y_train_fold)
|
|
y_pred_fold = model_pipeline.predict(x_test_fold)
|
|
|
|
#----------------
|
|
# Model metrics
|
|
#----------------
|
|
fscore = f1_score(y_test_fold, y_pred_fold)
|
|
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
|
pres = precision_score(y_test_fold, y_pred_fold)
|
|
recall = recall_score(y_test_fold, y_pred_fold)
|
|
#pres = precision_score(y_test_fold, y_pred_fold, zero_division=0)
|
|
#recall = recall_score(y_test_fold, y_pred_fold, zero_division=0)
|
|
accu = accuracy_score(y_test_fold, y_pred_fold)
|
|
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
|
|
|
fold=("fold_"+str(fold_no))
|
|
|
|
fold_dict[model_name].update({fold: {}})
|
|
#pp.pprint(fold_dict)
|
|
print("\nEnd of model", model_name, "\nLoop no.", fold_no)
|
|
|
|
fold_dict[model_name][fold].update(classification_metrics)
|
|
#fold_dict[model_name][fold]['F1_score'].append(score)
|
|
fold_dict[model_name][fold].update({'F1_score' : fscore})
|
|
fold_dict[model_name][fold].update({'MCC' : mcc})
|
|
fold_dict[model_name][fold].update({'Precision' : pres})
|
|
fold_dict[model_name][fold].update({'Recall' : recall})
|
|
fold_dict[model_name][fold].update({'Accuracy' : accu})
|
|
fold_dict[model_name][fold].update({'ROC_AUC' : roc_auc})
|
|
|
|
fold_no +=1
|
|
return(fold_dict) |