244 lines
7.4 KiB
Python
Executable file
244 lines
7.4 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Tue Mar 15 09:50:37 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
#https://stackoverflow.com/questions/50272416/gridsearch-on-model-and-classifiers
|
|
|
|
#%%
|
|
# https://github.com/davidsbatista/machine-learning-notebooks/blob/master/hyperparameter-across-models.ipynb
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
|
|
from sklearn import datasets
|
|
from sklearn.ensemble import ExtraTreesClassifier
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.ensemble import AdaBoostClassifier
|
|
from sklearn.ensemble import GradientBoostingClassifier
|
|
from sklearn.svm import SVC
|
|
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.linear_model import SGDClassifier
|
|
from sklearn.pipeline import Pipeline
|
|
from sklearn.model_selection import GridSearchCV
|
|
#%%
|
|
class EstimatorSelectionHelper:
|
|
|
|
def __init__(self, models, params):
|
|
self.models = models
|
|
self.params = params
|
|
self.keys = models.keys()
|
|
self.grid_searches = {}
|
|
|
|
def fit(self, X, y, **grid_kwargs):
|
|
for key in self.keys:
|
|
print('Running GridSearchCV for %s.' % key)
|
|
model = self.models[key]
|
|
params = self.params[key]
|
|
grid_search = GridSearchCV(model, params, **grid_kwargs)
|
|
grid_search.fit(X, y)
|
|
self.grid_searches[key] = grid_search
|
|
print('Done.')
|
|
|
|
def score_summary(self, sort_by='mean_test_score'):
|
|
frames = []
|
|
for name, grid_search in self.grid_searches.items():
|
|
frame = pd.DataFrame(grid_search.cv_results_)
|
|
frame = frame.filter(regex='^(?!.*param_).*$')
|
|
frame['estimator'] = len(frame)*[name]
|
|
frames.append(frame)
|
|
df = pd.concat(frames)
|
|
|
|
df = df.sort_values([sort_by], ascending=False)
|
|
df = df.reset_index()
|
|
df = df.drop(['rank_test_score', 'index'], 1)
|
|
|
|
columns = df.columns.tolist()
|
|
columns.remove('estimator')
|
|
columns = ['estimator']+columns
|
|
df = df[columns]
|
|
return df
|
|
|
|
#%%
|
|
breast_cancer = datasets.load_breast_cancer()
|
|
X_cancer = breast_cancer.data
|
|
y_cancer = breast_cancer.target
|
|
|
|
|
|
models1 = {
|
|
'ExtraTreesClassifier': ExtraTreesClassifier(),
|
|
'RandomForestClassifier': RandomForestClassifier(),
|
|
'AdaBoostClassifier': AdaBoostClassifier(),
|
|
'GradientBoostingClassifier': GradientBoostingClassifier()
|
|
}
|
|
|
|
params1 = {
|
|
'ExtraTreesClassifier': { 'n_estimators': [16, 32] },
|
|
'RandomForestClassifier': [
|
|
{ 'n_estimators': [16, 32] },
|
|
{'criterion': ['gini', 'entropy'], 'n_estimators': [8, 16]}],
|
|
'AdaBoostClassifier': { 'n_estimators': [16, 32] },
|
|
'GradientBoostingClassifier': { 'n_estimators': [16, 32], 'learning_rate': [0.8, 1.0] }
|
|
}
|
|
|
|
|
|
helper1 = EstimatorSelectionHelper(models1, params1)
|
|
helper1.fit(X_cancer, y_cancer, scoring='f1', n_jobs=2)
|
|
helper1.score_summary()
|
|
|
|
mm_df = helper1.score_summary()
|
|
# COMMENT: Not sure what scores is it mean of and the options available thus
|
|
|
|
#%%
|
|
|
|
class ClfSwitcher(BaseEstimator):
|
|
def __init__(
|
|
self,
|
|
estimator = SGDClassifier(),
|
|
):
|
|
"""
|
|
A Custom BaseEstimator that can switch between classifiers.
|
|
:param estimator: sklearn object - The classifier
|
|
"""
|
|
|
|
self.estimator = estimator
|
|
|
|
|
|
def fit(self, X, y=None, **kwargs):
|
|
self.estimator.fit(X, y)
|
|
return self
|
|
|
|
def predict(self, X, y=None):
|
|
return self.estimator.predict(X)
|
|
|
|
def predict_proba(self, X):
|
|
return self.estimator.predict_proba(X)
|
|
|
|
def score(self, X, y):
|
|
return self.estimator.score(X, y)
|
|
|
|
parameters = [
|
|
{
|
|
'clf__estimator': [SGDClassifier()], # SVM if hinge loss / logreg if log loss
|
|
#'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
|
|
#'tfidf__stop_words': ['english', None],
|
|
'clf__estimator__penalty': ('l2', 'elasticnet', 'l1'),
|
|
'clf__estimator__max_iter': [50, 80],
|
|
'clf__estimator__tol': [1e-4],
|
|
'clf__estimator__loss': ['hinge', 'log', 'modified_huber'],
|
|
},
|
|
{
|
|
'clf__estimator': [MultinomialNB()],
|
|
#'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
|
|
#'tfidf__stop_words': [None],
|
|
'clf__estimator__alpha': (1e-2, 1e-3, 1e-1),
|
|
},
|
|
|
|
{
|
|
'clf__estimator': [LogisticRegression()],
|
|
'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
|
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
|
'max_iter': list(range(100,800,100)),
|
|
'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
|
|
},
|
|
]
|
|
|
|
pipeline = Pipeline([
|
|
('pre', MinMaxScaler()),
|
|
('clf', ClfSwitcher()),
|
|
])
|
|
|
|
|
|
gscv = GridSearchCV(pipeline
|
|
, parameters
|
|
, cv=5
|
|
, n_jobs=12
|
|
, return_train_score=False
|
|
, verbose=3)
|
|
|
|
#gscv.fit(train_data, train_labels)
|
|
|
|
#%% my numerical data
|
|
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
|
, num_df_wtgt['mutation_class']
|
|
, test_size = 0.33
|
|
, random_state = 2
|
|
, shuffle = True
|
|
, stratify = num_df_wtgt['mutation_class'])
|
|
|
|
y_train.to_frame().value_counts().plot(kind = 'bar')
|
|
y_test.to_frame().value_counts().plot(kind = 'bar')
|
|
#%%
|
|
gscv.fit(X_train, y_train)
|
|
print('Best model:\n', gscv.best_params_)
|
|
print('Best models score:\n', gscv.best_score_)
|
|
gscv.score(X_test, y_test) # see how it does on test
|
|
|
|
#===========================================
|
|
mod_pred = gscv.predict(X_test)
|
|
|
|
fscore = f1_score(y_test, mod_pred)
|
|
fscore
|
|
#%% same as above
|
|
# custom classifier
|
|
|
|
class MyClassifier(BaseEstimator):
|
|
|
|
def __init__(self, classifier_type: str = 'SGDClassifier'):
|
|
"""
|
|
A Custome BaseEstimator that can switch between classifiers.
|
|
:param classifier_type: string - The switch for different classifiers
|
|
"""
|
|
self.classifier_type = classifier_type
|
|
|
|
|
|
def fit(self, X, y=None):
|
|
if self.classifier_type == 'SGDClassifier':
|
|
self.classifier_ = SGDClassifier()
|
|
elif self.classifier_type == 'MultinomialNB':
|
|
self.classifier_ = MultinomialNB()
|
|
else:
|
|
raise ValueError('Unkown classifier type.')
|
|
|
|
self.classifier_.fit(X, y)
|
|
return self
|
|
|
|
def predict(self, X, y=None):
|
|
return self.classifier_.predict(X)
|
|
|
|
def score(self, X, y):
|
|
return self.estimator.score(X, y)
|
|
|
|
pipeline = Pipeline([
|
|
('pre', MinMaxScaler())
|
|
#, ('clf', ClfSwitcher()
|
|
, ('clf', MyClassifier())
|
|
])
|
|
|
|
# parameter_space = {
|
|
# 'clf__classifier_type': ['SGDClassifier', 'MultinomialNB']
|
|
# }
|
|
|
|
parameter_space = [
|
|
{
|
|
'clf__estimator': [SGDClassifier()],
|
|
'clf__estimator__penalty': ('l2', 'elasticnet', 'l1'),
|
|
'clf__estimator__max_iter': [50, 80],
|
|
'clf__estimator__tol': [1e-4],
|
|
'clf__estimator__loss': ['hinge', 'log', 'modified_huber'],
|
|
},
|
|
{
|
|
'clf__estimator': [MultinomialNB()],
|
|
'clf__estimator__alpha': (1e-2, 1e-3, 1e-1),
|
|
},
|
|
]
|
|
|
|
search = GridSearchCV(pipeline , parameter_space, n_jobs=-1, cv=5)
|
|
search.fit(X_train, y_train)
|
|
print('Best model:\n', search.best_params_)
|
|
print('Best models score:\n', gscv.best_score_)
|