ML_AI_training/UQ_pnca_ML.py

327 lines
10 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 6 13:41:54 2022
@author: tanu
"""
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
import os, sys
import pandas as pd
import numpy as np
print(np.__version__)
print(pd.__version__)
import pprint as pp
from copy import deepcopy
from collections import Counter
from sklearn.impute import KNNImputer as KNN
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
#%% REMOVE once config is set up
from UQ_MultModelsCl import MultModelsCl
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
#%%
homedir = os.path.expanduser("~")
#==============
# directories
#==============a
datadir = homedir + '/git/Data/'
indir = datadir + drug + '/input/'
outdir = datadir + drug + '/output/'
#=======
# input
#=======
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
my_df = pd.read_csv(infile_ml1, index_col = 0)
my_df.dtypes
my_df_cols = my_df.columns
geneL_basic = ['pnca']
# -- CHECK script -- imports.py
#%% get cols
mycols = my_df.columns
mycols
# change from numberic to
num_type = ['int64', 'float64']
cat_type = ['object', 'bool']
# TODO:
# Treat active site aa pos as category and not numerical: This needs to be part of merged_df3!
#if my_df['active_aa_pos'].dtype in num_type:
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
# my_df['active_aa_pos'].dtype
# -- CHECK script -- imports.py
#%%============================================================================
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
or_cols = ['or_mychisq', 'log10_or_mychisq']
print("count of NULL values before imputation\n")
my_df[or_cols].isnull().sum()
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
, index = my_df['mutationinformation']
, columns = or_cols )
my_dfI.columns = ['or_rawI', 'logorI']
my_dfI.columns
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
my_dfI.head()
# merge with original based on index
my_df['index_bm'] = my_df.index
mydf_imputed = pd.merge(my_df
, my_dfI
, on = 'mutationinformation')
mydf_imputed = mydf_imputed.set_index(['index_bm'])
#%% Combine mmCSM_lig Data
#%% Combine PROVEAN data
#%% Combine ED logo data
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
# get logic from upstream!
my_df_ml = my_df.copy()
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
#%%============================================================================
# Separate blind test set
my_df_ml[drug].isna().sum()
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
blind_test_df.shape
training_df = my_df_ml[my_df_ml[drug].notna()]
training_df.shape
# Target1: dst
training_df[drug].value_counts()
training_df['dst_mode'].value_counts()
#%% Build X
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2']
foldX_cols = ['contacts'
, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_strFN = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_evolFN = ['consurf_score'
, 'snap2_score']
# quick inspection which lineage to use:
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
X_genomicFN = ['maf'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
#, 'lineage'
#, 'lineage_count_all'
#, 'lineage_count_unique'
]
#%% Construct numerical and categorical column names
# numerical feature names
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
#categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'lineage_labels' # misleading if using merged_df3
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
#, 'active_aa_pos'
]
#%% extracting dfs based on numerical, categorical column names
#----------------------------------
# WITHOUT the target var included
#----------------------------------
num_df = training_df[numerical_FN]
num_df.shape
cat_df = training_df[categorical_FN]
cat_df.shape
all_df = training_df[numerical_FN + categorical_FN]
all_df.shape
#------------------------------
# WITH the target var included:
#'wtgt': with target
#------------------------------
# drug and dst_mode should be the same thing
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
num_df_wtgt.shape
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
cat_df_wtgt.shape
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
all_df_wtgt.shape
#%%================================================================
#%% Apply ML
#%% Data
#------
# X
#------
X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
#X = all_df_wtgt[numerical_FN] # training numerical only
#X_bts = blind_test_df[numerical_FN] # blind test data numerical
#------
# y
#------
y = all_df_wtgt['dst_mode'] # training data y
y_bts = blind_test_df['dst_mode'] # blind data test y
#Blind test data {same format}
#X_bts = blind_test_df[numerical_FN]
#X_bts = blind_test_df[numerical_FN + categorical_FN]
#y_bts = blind_test_df['dst_mode']
X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# Quick check
(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
##############################################################################
print('Original Data\n', Counter(y)
, 'Data dim:', X.shape)
###############################################################################
#%%
############################################################################
# RESAMPLING
###############################################################################
#------------------------------
# Simple Random oversampling
# [Numerical + catgeorical]
#------------------------------
oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y)
print('Simple Random OverSampling\n', Counter(y_ros))
print(X_ros.shape)
#------------------------------
# Simple Random Undersampling
# [Numerical + catgeorical]
#------------------------------
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rus, y_rus = undersample.fit_resample(X, y)
print('Simple Random UnderSampling\n', Counter(y_rus))
print(X_rus.shape)
#------------------------------
# Simple combine ROS and RUS
# [Numerical + catgeorical]
#------------------------------
oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y)
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC))
print(X_rouC.shape)
#------------------------------
# SMOTE_NC: oversampling
# [numerical + categorical]
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
#------------------------------
# Determine categorical and numerical features
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
num_featuresL = list(numerical_ix)
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
numerical_colind
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
categorical_ix
categorical_colind = X.columns.get_indexer(list(categorical_ix))
categorical_colind
k_sm = 5 # 5 is deafult
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
print('SMOTE_NC OverSampling\n', Counter(y_smnc))
print(X_smnc.shape)
###############################################################################
#%% SMOTE RESAMPLING for NUMERICAL ONLY*
# #------------------------------
# # SMOTE: Oversampling
# # [Numerical ONLY]
# #------------------------------
# k_sm = 1
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
# X_sm, y_sm = sm.fit_resample(X, y)
# print(X_sm.shape)
# print('SMOTE OverSampling\n', Counter(y_sm))
# y_sm_df = y_sm.to_frame()
# y_sm_df.value_counts().plot(kind = 'bar')
# #------------------------------
# # SMOTE: Over + Undersampling COMBINED
# # [Numerical ONLY]
# #-----------------------------
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
# X_enn, y_enn = sm_enn.fit_resample(X, y)
# print(X_enn.shape)
# print('SMOTE Over+Under Sampling combined\n', Counter(y_enn))
###############################################################################
# TODO: Find over and undersampling JUST for categorical data