537 lines
21 KiB
Python
Executable file
537 lines
21 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sun Mar 6 13:41:54 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
def setvars(gene,drug):
|
|
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
|
|
import os, sys
|
|
import pandas as pd
|
|
import numpy as np
|
|
print(np.__version__)
|
|
print(pd.__version__)
|
|
import pprint as pp
|
|
from copy import deepcopy
|
|
from collections import Counter
|
|
from sklearn.impute import KNNImputer as KNN
|
|
from imblearn.over_sampling import RandomOverSampler
|
|
from imblearn.under_sampling import RandomUnderSampler
|
|
from imblearn.over_sampling import SMOTE
|
|
from sklearn.datasets import make_classification
|
|
from imblearn.combine import SMOTEENN
|
|
from imblearn.combine import SMOTETomek
|
|
|
|
from imblearn.over_sampling import SMOTENC
|
|
from imblearn.under_sampling import EditedNearestNeighbours
|
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
|
|
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
|
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
|
|
|
from sklearn.pipeline import Pipeline, make_pipeline
|
|
#%% GLOBALS
|
|
rs = {'random_state': 42}
|
|
njobs = {'n_jobs': 10}
|
|
|
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
|
, 'accuracy' : make_scorer(accuracy_score)
|
|
, 'fscore' : make_scorer(f1_score)
|
|
, 'precision' : make_scorer(precision_score)
|
|
, 'recall' : make_scorer(recall_score)
|
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
, 'jcc' : make_scorer(jaccard_score)
|
|
})
|
|
|
|
skf_cv = StratifiedKFold(n_splits = 10
|
|
#, shuffle = False, random_state= None)
|
|
, shuffle = True,**rs)
|
|
|
|
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
, n_repeats = 3
|
|
, **rs)
|
|
|
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|
|
|
#%% FOR LATER: Combine ED logo data
|
|
#%% FOR LATER: active aa site annotations **DONE on 15/05/2022 as part of generating merged_dfs
|
|
###########################################################################
|
|
rs = {'random_state': 42}
|
|
njobs = {'n_jobs': 10}
|
|
homedir = os.path.expanduser("~")
|
|
|
|
#==============
|
|
# directories
|
|
#==============
|
|
datadir = homedir + '/git/Data/'
|
|
indir = datadir + drug + '/input/'
|
|
outdir = datadir + drug + '/output/'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
|
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
|
|
|
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
|
my_df.dtypes
|
|
my_df_cols = my_df.columns
|
|
|
|
geneL_basic = ['pnca']
|
|
geneL_na = ['gid']
|
|
geneL_na_ppi2 = ['rpob']
|
|
geneL_ppi2 = ['alr', 'embb', 'katg']
|
|
#%% get cols
|
|
mycols = my_df.columns
|
|
|
|
# # change from numberic to
|
|
# num_type = ['int64', 'float64']
|
|
# cat_type = ['object', 'bool']
|
|
|
|
# if my_df['active_aa_pos'].dtype in num_type:
|
|
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
|
# my_df['active_aa_pos'].dtype
|
|
|
|
# FIXME: if this is not structural, remove from source..
|
|
# Drop NA where numerical cols have them
|
|
if gene.lower() in geneL_na_ppi2:
|
|
#D1148 get rid of
|
|
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
|
|
my_df = my_df.drop(index=na_index)
|
|
|
|
# FIXME: either impute or remove!
|
|
# for embb (L114M, F115L, V123L, V125I, V131M) delete for now
|
|
if gene.lower() in ['embb']:
|
|
na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
|
|
my_df = my_df.drop(index=na_index)# RERUN embb with the 5 values now present
|
|
|
|
###########################################################################
|
|
#%% Add lineage calculation columns
|
|
#FIXME: Check if this can be imported from config?
|
|
total_mtblineage_uc = 8
|
|
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
|
|
#bar = my_df[lineage_colnames]
|
|
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
|
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
|
|
###########################################################################
|
|
#%% AA property change
|
|
#--------------------
|
|
# Water prop change
|
|
#--------------------
|
|
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
|
|
my_df['water_change'].value_counts()
|
|
|
|
water_prop_changeD = {
|
|
'hydrophobic_to_neutral' : 'change'
|
|
, 'hydrophobic_to_hydrophobic' : 'no_change'
|
|
, 'neutral_to_neutral' : 'no_change'
|
|
, 'neutral_to_hydrophobic' : 'change'
|
|
, 'hydrophobic_to_hydrophilic' : 'change'
|
|
, 'neutral_to_hydrophilic' : 'change'
|
|
, 'hydrophilic_to_neutral' : 'change'
|
|
, 'hydrophilic_to_hydrophobic' : 'change'
|
|
, 'hydrophilic_to_hydrophilic' : 'no_change'
|
|
}
|
|
|
|
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
|
my_df['water_change'].value_counts()
|
|
|
|
#--------------------
|
|
# Polarity change
|
|
#--------------------
|
|
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
|
my_df['polarity_change'].value_counts()
|
|
|
|
polarity_prop_changeD = {
|
|
'non-polar_to_non-polar' : 'no_change'
|
|
, 'non-polar_to_neutral' : 'change'
|
|
, 'neutral_to_non-polar' : 'change'
|
|
, 'neutral_to_neutral' : 'no_change'
|
|
, 'non-polar_to_basic' : 'change'
|
|
, 'acidic_to_neutral' : 'change'
|
|
, 'basic_to_neutral' : 'change'
|
|
, 'non-polar_to_acidic' : 'change'
|
|
, 'neutral_to_basic' : 'change'
|
|
, 'acidic_to_non-polar' : 'change'
|
|
, 'basic_to_non-polar' : 'change'
|
|
, 'neutral_to_acidic' : 'change'
|
|
, 'acidic_to_acidic' : 'no_change'
|
|
, 'basic_to_acidic' : 'change'
|
|
, 'basic_to_basic' : 'no_change'
|
|
, 'acidic_to_basic' : 'change'}
|
|
|
|
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
|
my_df['polarity_change'].value_counts()
|
|
|
|
#--------------------
|
|
# Electrostatics change
|
|
#--------------------
|
|
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
|
my_df['electrostatics_change'].value_counts()
|
|
|
|
calc_prop_changeD = {
|
|
'non-polar_to_non-polar' : 'no_change'
|
|
, 'non-polar_to_polar' : 'change'
|
|
, 'polar_to_non-polar' : 'change'
|
|
, 'non-polar_to_pos' : 'change'
|
|
, 'neg_to_non-polar' : 'change'
|
|
, 'non-polar_to_neg' : 'change'
|
|
, 'pos_to_polar' : 'change'
|
|
, 'pos_to_non-polar' : 'change'
|
|
, 'polar_to_polar' : 'no_change'
|
|
, 'neg_to_neg' : 'no_change'
|
|
, 'polar_to_neg' : 'change'
|
|
, 'pos_to_neg' : 'change'
|
|
, 'pos_to_pos' : 'no_change'
|
|
, 'polar_to_pos' : 'change'
|
|
, 'neg_to_polar' : 'change'
|
|
, 'neg_to_pos' : 'change'
|
|
}
|
|
|
|
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
|
my_df['electrostatics_change'].value_counts()
|
|
|
|
#--------------------
|
|
# Summary change: Create a combined column summarising these three cols
|
|
#--------------------
|
|
detect_change = 'change'
|
|
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
|
|
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
|
|
my_df['aa_prop_change'] = (my_df[check_prop_cols].values == detect_change).any(1).astype(int)
|
|
my_df['aa_prop_change'].value_counts()
|
|
my_df['aa_prop_change'].dtype
|
|
|
|
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
|
|
, 0: 'no_change'})
|
|
|
|
my_df['aa_prop_change'].value_counts()
|
|
my_df['aa_prop_change'].dtype
|
|
|
|
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
|
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
|
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
|
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
|
|
|
print("count of NULL values before imputation\n")
|
|
print(my_df[or_cols].isnull().sum())
|
|
|
|
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
|
|
|
|
|
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
|
, index = my_df['mutationinformation']
|
|
, columns = or_cols )
|
|
my_dfI.columns = ['or_rawI', 'logorI']
|
|
my_dfI.columns
|
|
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
|
|
my_dfI.head()
|
|
print("count of NULL values AFTER imputation\n")
|
|
print(my_dfI.isnull().sum())
|
|
|
|
#-------------------------------------------
|
|
# OR df Merge: with original based on index
|
|
#-------------------------------------------
|
|
my_df['index_bm'] = my_df.index
|
|
mydf_imputed = pd.merge(my_df
|
|
, my_dfI
|
|
, on = 'mutationinformation')
|
|
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
|
|
|
my_df['log10_or_mychisq'].isna().sum()
|
|
mydf_imputed['log10_or_mychisq'].isna().sum()
|
|
mydf_imputed['logorI'].isna().sum()
|
|
|
|
len(my_df.columns)
|
|
len(mydf_imputed.columns)
|
|
|
|
#-----------------------------------------
|
|
# REASSIGN my_df after imputing OR values
|
|
#-----------------------------------------
|
|
my_df = mydf_imputed.copy()
|
|
|
|
#%%########################################################################
|
|
#==========================
|
|
# Data for ML
|
|
#==========================
|
|
my_df_ml = my_df.copy()
|
|
|
|
#==========================
|
|
# BLIND test set
|
|
#==========================
|
|
# Separate blind test set
|
|
my_df_ml[drug].isna().sum()
|
|
|
|
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
|
blind_test_df.shape
|
|
|
|
training_df = my_df_ml[my_df_ml[drug].notna()]
|
|
training_df.shape
|
|
|
|
# Target1: dst
|
|
training_df[drug].value_counts()
|
|
training_df['dst_mode'].value_counts()
|
|
|
|
#%% Build X: input for ML
|
|
common_cols_stabiltyN = ['ligand_distance'
|
|
, 'ligand_affinity_change'
|
|
, 'duet_stability_change'
|
|
, 'ddg_foldx'
|
|
, 'deepddg'
|
|
, 'ddg_dynamut2'
|
|
, 'mmcsm_lig'
|
|
, 'contacts']
|
|
|
|
# Build stability columns ~ gene
|
|
if gene.lower() in geneL_basic:
|
|
X_stabilityN = common_cols_stabiltyN
|
|
cols_to_mask = ['ligand_affinity_change']
|
|
|
|
if gene.lower() in geneL_ppi2:
|
|
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
|
|
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
|
|
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
|
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
|
|
|
|
if gene.lower() in geneL_na:
|
|
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
|
|
geneL_na_st_cols = ['mcsm_na_affinity']
|
|
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
|
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
|
|
|
|
if gene.lower() in geneL_na_ppi2:
|
|
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
|
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
|
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
|
|
|
|
|
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
|
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
|
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
|
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
|
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
|
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
|
]
|
|
|
|
X_str = ['rsa'
|
|
#, 'asa'
|
|
, 'kd_values'
|
|
, 'rd_values']
|
|
|
|
X_ssFN = X_stabilityN + X_str + X_foldX_cols
|
|
|
|
X_evolFN = ['consurf_score'
|
|
, 'snap2_score'
|
|
, 'provean_score']
|
|
|
|
X_genomic_mafor = ['maf'
|
|
, 'logorI'
|
|
# , 'or_rawI'
|
|
# , 'or_mychisq'
|
|
# , 'or_logistic'
|
|
# , 'or_fisher'
|
|
# , 'pval_fisher'
|
|
]
|
|
|
|
X_genomic_linegae = ['lineage_proportion'
|
|
, 'dist_lineage_proportion'
|
|
#, 'lineage' # could be included as a category but it has L2;L4 formatting
|
|
, 'lineage_count_all'
|
|
, 'lineage_count_unique'
|
|
]
|
|
|
|
X_genomicFN = X_genomic_mafor + X_genomic_linegae
|
|
|
|
#%% Construct numerical and categorical column names
|
|
# numerical feature names
|
|
# numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
|
|
|
numerical_FN = X_ssFN + X_evolFN + X_genomicFN
|
|
|
|
#categorical feature names
|
|
categorical_FN = ['ss_class'
|
|
# , 'wt_prop_water'
|
|
# , 'mut_prop_water'
|
|
# , 'wt_prop_polarity'
|
|
# , 'mut_prop_polarity'
|
|
# , 'wt_calcprop'
|
|
# , 'mut_calcprop'
|
|
, 'aa_prop_change'
|
|
, 'electrostatics_change'
|
|
, 'polarity_change'
|
|
, 'water_change'
|
|
, 'drtype_mode_labels' # beware then you can use it to predict
|
|
#, 'active_aa_pos' # TODO?
|
|
]
|
|
###########################################################################
|
|
#=======================
|
|
# Masking columns:
|
|
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
|
#=======================
|
|
#%% Masking columns
|
|
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
|
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
|
|
|
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
|
# (my_df_ml['ligand_affinity_change'] == 0).sum()
|
|
|
|
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
|
|
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
|
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
|
|
|
|
# mask the column ligand distance > 10
|
|
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
|
|
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
|
|
|
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
|
|
|
|
# write file for check
|
|
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
|
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
|
|
|
#%% extracting dfs based on numerical, categorical column names
|
|
#----------------------------------
|
|
# WITHOUT the target var included
|
|
#----------------------------------
|
|
num_df = training_df[numerical_FN]
|
|
num_df.shape
|
|
|
|
cat_df = training_df[categorical_FN]
|
|
cat_df.shape
|
|
|
|
all_df = training_df[numerical_FN + categorical_FN]
|
|
all_df.shape
|
|
|
|
#------------------------------
|
|
# WITH the target var included:
|
|
#'wtgt': with target
|
|
#------------------------------
|
|
# drug and dst_mode should be the same thing
|
|
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
|
|
num_df_wtgt.shape
|
|
|
|
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
|
|
cat_df_wtgt.shape
|
|
|
|
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
|
all_df_wtgt.shape
|
|
#%%########################################################################
|
|
#============
|
|
# ML data
|
|
#============
|
|
#------
|
|
# X: Training and Blind test (BTS)
|
|
#------
|
|
X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
|
|
X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
|
|
#X = all_df_wtgt[numerical_FN] # training numerical only
|
|
#X_bts = blind_test_df[numerical_FN] # blind test data numerical
|
|
|
|
#------
|
|
# y
|
|
#------
|
|
y = all_df_wtgt['dst_mode'] # training data y
|
|
y_bts = blind_test_df['dst_mode'] # blind data test y
|
|
|
|
#X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
|
|
|
# Quick check
|
|
#(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
|
|
for i in range(len(cols_to_mask)):
|
|
ind = i+1
|
|
print('\nindex:', i, '\nind:', ind)
|
|
print('\nMask count check:'
|
|
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
|
|
)
|
|
|
|
print('Original Data\n', Counter(y)
|
|
, 'Data dim:', X.shape)
|
|
|
|
###############################################################################
|
|
#%%
|
|
############################################################################
|
|
# RESAMPLING
|
|
###############################################################################
|
|
#------------------------------
|
|
# Simple Random oversampling
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
oversample = RandomOverSampler(sampling_strategy='minority')
|
|
X_ros, y_ros = oversample.fit_resample(X, y)
|
|
print('Simple Random OverSampling\n', Counter(y_ros))
|
|
print(X_ros.shape)
|
|
|
|
#------------------------------
|
|
# Simple Random Undersampling
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
undersample = RandomUnderSampler(sampling_strategy='majority')
|
|
X_rus, y_rus = undersample.fit_resample(X, y)
|
|
print('Simple Random UnderSampling\n', Counter(y_rus))
|
|
print(X_rus.shape)
|
|
|
|
#------------------------------
|
|
# Simple combine ROS and RUS
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
oversample = RandomOverSampler(sampling_strategy='minority')
|
|
X_ros, y_ros = oversample.fit_resample(X, y)
|
|
undersample = RandomUnderSampler(sampling_strategy='majority')
|
|
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
|
|
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC))
|
|
print(X_rouC.shape)
|
|
|
|
#------------------------------
|
|
# SMOTE_NC: oversampling
|
|
# [numerical + categorical]
|
|
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
|
|
#------------------------------
|
|
# Determine categorical and numerical features
|
|
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
|
|
numerical_ix
|
|
num_featuresL = list(numerical_ix)
|
|
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
|
|
numerical_colind
|
|
|
|
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
|
|
categorical_ix
|
|
categorical_colind = X.columns.get_indexer(list(categorical_ix))
|
|
categorical_colind
|
|
|
|
k_sm = 5 # 5 is deafult
|
|
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
|
|
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
|
|
print('SMOTE_NC OverSampling\n', Counter(y_smnc))
|
|
print(X_smnc.shape)
|
|
globals().update(locals()) # TROLOLOLOLOLOLS
|
|
#print("i did a horrible hack :-)")
|
|
###############################################################################
|
|
#%% SMOTE RESAMPLING for NUMERICAL ONLY*
|
|
# #------------------------------
|
|
# # SMOTE: Oversampling
|
|
# # [Numerical ONLY]
|
|
# #------------------------------
|
|
# k_sm = 1
|
|
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
|
|
# X_sm, y_sm = sm.fit_resample(X, y)
|
|
# print(X_sm.shape)
|
|
# print('SMOTE OverSampling\n', Counter(y_sm))
|
|
# y_sm_df = y_sm.to_frame()
|
|
# y_sm_df.value_counts().plot(kind = 'bar')
|
|
|
|
# #------------------------------
|
|
# # SMOTE: Over + Undersampling COMBINED
|
|
# # [Numerical ONLY]
|
|
# #-----------------------------
|
|
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
|
|
# X_enn, y_enn = sm_enn.fit_resample(X, y)
|
|
# print(X_enn.shape)
|
|
# print('SMOTE Over+Under Sampling combined\n', Counter(y_enn))
|
|
|
|
###############################################################################
|
|
# TODO: Find over and undersampling JUST for categorical data
|