167 lines
5.1 KiB
Python
Executable file
167 lines
5.1 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Mon May 16 05:59:12 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Tue Mar 15 11:09:50 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
|
|
# similar to _p1 but with Clf_Switcher
|
|
#%% Import libraries, data, and scoring func: UQ_pnca_ML.py
|
|
rs = {'random_state': 42}
|
|
njobs = {'n_jobs': 10}
|
|
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
|
|
|
class ClfSwitcher(BaseEstimator):
|
|
def __init__(
|
|
self,
|
|
estimator = SGDClassifier(),
|
|
):
|
|
"""
|
|
A Custom BaseEstimator that can switch between classifiers.
|
|
:param estimator: sklearn object - The classifier
|
|
"""
|
|
self.estimator = estimator
|
|
|
|
def fit(self, X, y=None, **kwargs):
|
|
self.estimator.fit(X, y)
|
|
return self
|
|
|
|
def predict(self, X, y=None):
|
|
return self.estimator.predict(X)
|
|
|
|
def predict_proba(self, X):
|
|
return self.estimator.predict_proba(X)
|
|
|
|
def score(self, X, y):
|
|
return self.estimator.score(X, y)
|
|
|
|
#%%
|
|
parameters = [
|
|
|
|
{'fs__min_features_to_select': [1]
|
|
#, 'fs__scoring': ['matthews_corrcoef']
|
|
, 'fs__cv': [skf_cv]},
|
|
|
|
# {
|
|
# 'clf__estimator': [LogisticRegression(**rs)],
|
|
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
|
# 'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
|
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
|
# 'clf__estimator__solver': ['saga']
|
|
# },
|
|
# {
|
|
# 'clf__estimator': [LogisticRegression(**rs)],
|
|
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
|
# 'clf__estimator__penalty': ['l2', 'none'],
|
|
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
|
# 'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
|
|
# },
|
|
# {
|
|
# 'clf__estimator': [LogisticRegression(**rs)],
|
|
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
|
# 'clf__estimator__penalty': ['l1', 'l2'],
|
|
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
|
# 'clf__estimator__solver': ['liblinear']
|
|
# }
|
|
|
|
{'fs__min_features_to_select': [1,2]},
|
|
{'clf': [LogisticRegression(**rs)],
|
|
#'clf__C': np.logspace(0, 4, 10),
|
|
'clf__C': [2, 2.8],
|
|
'clf__max_iter': [100],
|
|
'clf__penalty': ['l1', 'l2'],
|
|
'clf__solver': ['saga']
|
|
|
|
}
|
|
]
|
|
#%% Create pipeline
|
|
pipeline = Pipeline([
|
|
('pre', MinMaxScaler())
|
|
, ('fs', RFECV(LogisticRegression(**rs), scoring = 'matthews_corrcoef'))#cant be my mcc_fn
|
|
#, ('clf', ClfSwitcher()) # gives me slightly lower results
|
|
#, ('clf', LogisticRegression(**rs))
|
|
])
|
|
|
|
#%%
|
|
# Grid search i.e hyperparameter tuning and refitting on mcc
|
|
gscv_lr = GridSearchCV(pipeline
|
|
, parameters
|
|
, scoring = mcc_score_fn, refit = 'mcc'
|
|
, cv = skf_cv
|
|
, **njobs
|
|
, return_train_score = False
|
|
, verbose = 3)
|
|
|
|
# Fit
|
|
gscv_lr.fit(X, y)
|
|
gscv_lr.best_estimator_
|
|
gscv_lr.best_params_
|
|
gscv_lr.best_score_
|
|
|
|
# Blind test
|
|
test_predict = gscv_lr.predict(X_bts)
|
|
print(test_predict)
|
|
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
|
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
|
|
|
|
|
|
|
####
|
|
gscv_lr_fit = gscv_lr.fit(X, y)
|
|
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
|
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
|
gscv_lr_fit.best_score_
|
|
|
|
print('Best model:\n', gscv_lr_fit_be_mod)
|
|
print('Best models score:\n', gscv_lr_fit.best_score_, ':'
|
|
, round(gscv_lr_fit.best_score_, 2))
|
|
|
|
#print('\nMean test score from fit results:', round(mean(mod_fs_fbmr['mean_test_mcc']),2))
|
|
print('\nMean test score from fit results:'
|
|
, round(np.nanmean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
|
|
|
#%% print selected features
|
|
# Now get the features out
|
|
all_features = gscv_lr.feature_names_in_
|
|
#all_features = gsfit.feature_names_in_
|
|
|
|
sel_features = X.columns[gscv_lr.best_estimator_.named_steps['fs'].get_support()]
|
|
n_sf = gscv_lr.best_estimator_.named_steps['fs'].n_features_
|
|
|
|
# get model name
|
|
model_name = gscv_lr.best_estimator_.named_steps['clf']
|
|
b_model_params = gscv_lr.best_params_
|
|
|
|
print('\n========================================'
|
|
, '\nRunning model:'
|
|
, '\nModel name:', model_name
|
|
, '\n==============================================='
|
|
, '\nRunning feature selection with RFECV for model'
|
|
, '\nTotal no. of features in model:', len(all_features)
|
|
, '\nThese are:\n', all_features, '\n\n'
|
|
, '\nNo of features for best model: ', n_sf
|
|
, '\nThese are:', sel_features, '\n\n'
|
|
, '\nBest Model hyperparams:', b_model_params
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
###############################################################################
|
|
#%% Blind test
|
|
######################################
|
|
# Blind test
|
|
######################################
|
|
test_predict = gscv_lr.predict(X_bts)
|
|
print(test_predict)
|
|
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
|
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|