ML_AI_training/UQ_FS_fn.py

268 lines
No EOL
10 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 23 23:25:26 2022
@author: tanu
"""
#####################################
def fsgs(input_df
, target
, blind_test_df = pd.DataFrame()
, blind_test_target = pd.Series(dtype = 'int64')
#, y_trueS = pd.Series()
, estimator = LogisticRegression(**rs)
, param_gridLd = {}
, cv_method = StratifiedKFold(n_splits = 10
, shuffle = True,**rs)
, var_type = ['numerical'
, 'categorical'
, 'mixed']
#, fs_estimator = [LogisticRegression(**rs)]
, fs = RFECV(DecisionTreeClassifier(**rs)
, cv = StratifiedKFold(n_splits = 10
, shuffle = True,**rs)
, scoring = 'matthews_corrcoef')
):
'''
returns
Dict containing results from FS and hyperparam tuning for a given estiamtor
>>> ADD MORE <<<
optimised/selected based on mcc
'''
# Determine categorical and numerical features
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
# Determine preprocessing steps ~ var_type
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
###########################################################################
#=================
# Create var_type ~ column names
# using one hot encoder with RFECV means the names internally are lost
# Hence fit col_transformeer to my input_df and get all the column names
# out and stored in a var to allow the 'selected features' to be subsetted
# from the numpy boolean array
#=================
col_transform.fit(input_df)
col_transform.get_feature_names_out()
var_type_colnames = col_transform.get_feature_names_out()
var_type_colnames = pd.Index(var_type_colnames)
if var_type == 'mixed':
print('\nVariable type is:', var_type
, '\nNo. of columns in input_df:', len(input_df.columns)
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
else:
print('\nNo. of columns in input_df:', len(input_df.columns))
############################################################################
# Create Pipeline object
pipe = Pipeline([
('pre', col_transform),
('fs', fs),
#('clf', LogisticRegression(**rs))])
('clf', estimator)])
############################################################################
# Define GridSearchCV
gscv_fs = GridSearchCV(pipe
, param_gridLd
, cv = cv_method
, scoring = mcc_score_fn
, refit = 'mcc'
, verbose = 1
, return_train_score = True
, **njobs)
gscv_fs.fit(input_df, target)
###########################################################################
# Get best param and scores out
gscv_fs.best_params_
gscv_fs.best_score_
# Training best score corresponds to the max of the mean_test<score>
train_bscore = round(gscv_fs.best_score_, 2); train_bscore
print('\nTraining best score (MCC):', train_bscore)
gscv_fs.cv_results_['mean_test_mcc']
round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)
check_train_score = [round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
, round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)]
check_train_score = np.nanmax(check_train_score)
# Training results
gscv_tr_resD = gscv_fs.cv_results_
mod_refit_param = gscv_fs.refit
# sanity check
if train_bscore == check_train_score:
print('\nVerified training score (MCC):', train_bscore )
else:
print('\nTraining score could not be internatlly verified. Please check training results dict')
#-------------------------
# Blind test: REAL check!
#-------------------------
#tp = gscv_fs.predict(X_bts)
tp = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, tp),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, tp),2))
#=================
# info extraction
#=================
# gives input vals??
gscv_fs._check_n_features
# gives gscv params used
gscv_fs._get_param_names()
# gives ??
gscv_fs.best_estimator_
gscv_fs.best_params_ # gives best estimator params as a dict
gscv_fs.best_estimator_._final_estimator # similar to above, doesn't contain max_iter
gscv_fs.best_estimator_.named_steps['fs'].get_support()
gscv_fs.best_estimator_.named_steps['fs'].ranking_ # array of ranks for the features
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.mean()
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
#gscv_fs.best_estimator_.named_steps['fs'].grid_scores_
############################################################################
#============
# FS results
#============
# Now get the features out
#--------------
# All features
#--------------
all_features = gscv_fs.feature_names_in_
n_all_features = gscv_fs.n_features_in_
#all_features = gsfit.feature_names_in_
#--------------
# Selected features by the classifier
# Important to have var_type_colnames here
#----------------
#sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()] 3 only for numerical df
sel_features = var_type_colnames[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
#--------------
# Get model name
#--------------
model_name = gscv_fs.best_estimator_.named_steps['clf']
b_model_params = gscv_fs.best_params_
print('\n========================================'
, '\nRunning model:'
, '\nModel name:', model_name
, '\n==============================================='
, '\nRunning feature selection with RFECV for model'
, '\nTotal no. of features in model:', len(all_features)
, '\nThese are:\n', all_features, '\n\n'
, '\nNo of features for best model: ', n_sf
, '\nThese are:', sel_features, '\n\n'
, '\nBest Model hyperparams:', b_model_params
)
###############################################################################
############################## OUTPUT #########################################
###############################################################################
#=========================
# Blind test: BTS results
#=========================
# Build the final results with all scores for a feature selected model
#bts_predict = gscv_fs.predict(X_bts)
bts_predict = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, bts_predict),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
# Diff b/w train and bts test scores
train_test_diff = train_bscore - bts_mcc_score
print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
# create a dict with all scores
lr_btsD = {#'best_model': list(gscv_lr_fit_be_mod.items())
#'bts_mcc':None
'bts_fscore':None
, 'bts_precision':None
, 'bts_recall':None
, 'bts_accuracy':None
, 'bts_roc_auc':None
, 'bts_jaccard':None}
lr_btsD
#lr_btsD['bts_mcc'] = bts_mcc_score
lr_btsD['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
lr_btsD['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
lr_btsD['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
lr_btsD['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
lr_btsD['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
lr_btsD['bts_jaccard'] = round(jaccard_score(blind_test_target, bts_predict),2)
lr_btsD
#===========================
# Add FS related model info
#===========================
model_namef = str(model_name)
# FIXME: doesn't tell you which it has chosen
fs_methodf = str(gscv_fs.best_estimator_.named_steps['fs'])
all_featuresL = list(all_features)
fs_res_arrayf = str(list( gscv_fs.best_estimator_.named_steps['fs'].get_support()))
fs_res_array_rankf = str(list( gscv_fs.best_estimator_.named_steps['fs'].ranking_))
sel_featuresf = list(sel_features)
n_sf = int(n_sf)
output_modelD = {'model_name': model_namef
, 'model_refit_param': mod_refit_param
, 'Best_model_params': b_model_params
, 'n_all_features': n_all_features
, 'fs_method': fs_methodf
, 'fs_res_array': fs_res_arrayf
, 'fs_res_array_rank': fs_res_array_rankf
, 'all_feature_names': all_featuresL
, 'n_sel_features': n_sf
, 'sel_features_names': sel_featuresf}
output_modelD
#========================================
# Update output_modelD with bts_results
#========================================
output_modelD.update(lr_btsD)
output_modelD
output_modelD['train_score (MCC)'] = train_bscore
output_modelD['bts_mcc'] = bts_mcc_score
output_modelD['train_bts_diff'] = round(train_test_diff,2)
print(output_modelD)
return(output_modelD)