ML_AI_training/UQ_FS_eg.py

292 lines
10 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 21 02:52:36 2022
@author: tanu
"""
# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, mutual_info_classif
#pd.options.plotting.backend = "plotly"
X_eg, y_eg = make_classification(n_samples=1000,
n_features=30,
n_informative=5,
n_redundant=5,
n_classes=2,
random_state=123)
pipe = Pipeline([('scaler', StandardScaler()),
('selector', SelectKBest(mutual_info_classif, k=9)),
('classifier', LogisticRegression())])
search_space = [{'selector__k': [5, 6, 7, 10]},
{'classifier': [LogisticRegression()],
'classifier__C': [0.01,1.0],
'classifier__solver': ['saga', 'lbfgs']},
{'classifier': [RandomForestClassifier(n_estimators=100)],
'classifier__max_depth': [5, 10, None]},
{'classifier': [KNeighborsClassifier()],
'classifier__n_neighbors': [3, 7, 11],
'classifier__weights': ['uniform', 'distance']}]
clf = GridSearchCV(pipe, search_space, cv=10, verbose=0)
clf2 = clf.fit(X_eg, y_eg)
clf2._check_feature_names
clf2.best_estimator_.named_steps['selector'].n_features_in_
clf2.best_estimator_ #n of best features
clf2.best_params_
clf2.best_estimator_.get_params
clf2.get_feature_names(
clf3 = clf2.best_estimator_ #
clf3._final_estimator_
clf3._final_estimator.C
clf3._final_estimator.solver
fs_bmod = clf2.best_estimator_
print('\nbest model with feature selection:', fs_bmod)
#########################################################
#cv = rskf_cv
cv = skf_cv
# my data: Feature Selelction + GridSearch CV + Pipeline
pipe = Pipeline([
('pre', MinMaxScaler())
# , ('fs', RFECV(LogisticRegression(**rs), cv = cv, scoring = 'matthews_corrcoef'))
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
, ('clf', LogisticRegression(**rs))])
search_space = [
{ 'fs__estimator': [LogisticRegression(**rs)]
, 'fs__min_features_to_select': [0,1]
,'fs__cv': [rskf_cv]
},
{
#'clf': [LogisticRegression()],
#'clf__C': np.logspace(0, 4, 10),
'clf__C': [1],
'clf__max_iter': [100],
'clf__penalty': ['l1', 'l2'],
'clf__solver': ['saga']
},
{
#'clf': [LogisticRegression()],
#'clf__C': np.logspace(0, 4, 10),
'clf__C': [2, 2.5],
'clf__max_iter': [100],
'clf__penalty': ['l1', 'l2'],
'clf__solver': ['saga']
},
#{'clf': [RandomForestclf(n_estimators=100)],
# 'clf__max_depth': [5, 10, None]},
#{'clf': [KNeighborsclf()],
# 'clf__n_neighbors': [3, 7, 11],
# 'clf__weights': ['uniform', 'distance']
#}
]
gscv_fs = GridSearchCV(pipe
, search_space
, cv = cv
, scoring = mcc_score_fn
, refit = 'mcc'
, verbose = 1
, return_train_score = True
, **njobs)
gscv_fs.fit(X, y)
#Fitting 10 folds for each of 8 candidates, totalling 80 fits
# QUESTION: HOW??
gscv_fs.best_params_
gscv_fs.best_score_
# Training best score corresponds to the max of the mean_test<score>
train_bscore = round(gscv_fs.best_score_, 2); train_bscore
print('\nTraining best score (MCC):', train_bscore)
gscv_fs.cv_results_['mean_test_mcc']
round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)
check_train_score = [round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
, round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)]
check_train_score = np.nanmax(check_train_score)
# Training results
gscv_tr_resD = gscv_fs.cv_results_
mod_refit_param = gscv_fs.refit
# sanity check
if train_bscore == check_train_score:
print('\nVerified training score (MCC):', train_bscore )
else:
print('\nTraining score could not be internatlly verified. Please check training results dict')
# Blind test: REAL check!
tp = gscv_fs.predict(X_bts)
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, tp),2))
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, tp),2))
############
# info extraction
############
# gives input vals??
gscv_fs._check_n_features
# gives gscv params used
gscv_fs._get_param_names()
# gives ??
gscv_fs.best_estimator_
gscv_fs.best_params_ # gives best estimator params as a dict
gscv_fs.best_estimator_._final_estimator # similar to above, doesn't contain max_iter
gscv_fs.best_estimator_.named_steps['fs'].get_support()
gscv_fs.best_estimator_.named_steps['fs'].ranking_ # array of ranks for the features
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.mean()
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
#gscv_fs.best_estimator_.named_steps['fs'].grid_scores_
###############################################################################
#============
# FS results
#============
# Now get the features out
all_features = gscv_fs.feature_names_in_
n_all_features = gscv_fs.n_features_in_
#all_features = gsfit.feature_names_in_
sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
# get model name
model_name = gscv_fs.best_estimator_.named_steps['clf']
b_model_params = gscv_fs.best_params_
print('\n========================================'
, '\nRunning model:'
, '\nModel name:', model_name
, '\n==============================================='
, '\nRunning feature selection with RFECV for model'
, '\nTotal no. of features in model:', len(all_features)
, '\nThese are:\n', all_features, '\n\n'
, '\nNo of features for best model: ', n_sf
, '\nThese are:', sel_features, '\n\n'
, '\nBest Model hyperparams:', b_model_params
)
###############################################################################
############################## OUTPUT #########################################
###############################################################################
#=========================
# Blind test: BTS results
#=========================
# Build the final results with all scores for a feature selected model
bts_predict = gscv_fs.predict(X_bts)
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, bts_predict),2))
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, bts_predict),2))
bts_mcc_score = round(matthews_corrcoef(y_bts, bts_predict),2)
# Diff b/w train and bts test scores
train_test_diff = train_bscore - bts_mcc_score
print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
# create a dict with all scores
lr_btsD = {#'best_model': list(gscv_lr_fit_be_mod.items())
#'bts_mcc':None
'bts_fscore':None
, 'bts_precision':None
, 'bts_recall':None
, 'bts_accuracy':None
, 'bts_roc_auc':None
, 'bts_jaccard':None}
lr_btsD
#lr_btsD['bts_mcc'] = bts_mcc_score
lr_btsD['bts_fscore'] = round(f1_score(y_bts, bts_predict),2)
lr_btsD['bts_precision'] = round(precision_score(y_bts, bts_predict),2)
lr_btsD['bts_recall'] = round(recall_score(y_bts, bts_predict),2)
lr_btsD['bts_accuracy'] = round(accuracy_score(y_bts, bts_predict),2)
lr_btsD['bts_roc_auc'] = round(roc_auc_score(y_bts, bts_predict),2)
lr_btsD['bts_jaccard'] = round(jaccard_score(y_bts, bts_predict),2)
lr_btsD
#===========================
# Add FS related model info
#===========================
model_namef = str(model_name)
# FIXME: doesn't tell you which it has chosen
fs_methodf = str(gscv_fs.best_estimator_.named_steps['fs'])
all_featuresL = list(all_features)
fs_res_arrayf = str(list( gscv_fs.best_estimator_.named_steps['fs'].get_support()))
fs_res_array_rankf = list( gscv_fs.best_estimator_.named_steps['fs'].ranking_)
sel_featuresf = list(sel_features)
n_sf = int(n_sf)
output_modelD = {'model_name': model_namef
, 'model_refit_param': mod_refit_param
, 'Best_model_params': b_model_params
, 'n_all_features': n_all_features
, 'fs_method': fs_methodf
, 'fs_res_array': fs_res_arrayf
, 'fs_res_array_rank': fs_res_array_rankf
, 'all_feature_names': all_featuresL
, 'n_sel_features': n_sf
, 'sel_features_names': sel_featuresf}
output_modelD
#========================================
# Update output_modelD with bts_results
#========================================
output_modelD.update(lr_btsD)
output_modelD
output_modelD['train_score (MCC)'] = train_bscore
output_modelD['bts_mcc'] = bts_mcc_score
output_modelD['train_bts_diff'] = round(train_test_diff,2)
output_modelD
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NpEncoder, self).default(obj)
json.dumps(output_modelD, cls=NpEncoder)
#========================================
# Write final output file
# https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file
#========================================
#output final dict as a json
outFile = 'LR_FS.json'
with open(outFile, 'w') as f:
f.write(json.dumps(output_modelD,cls=NpEncoder))
# read json
file = 'LR_FS.json'
with open(file, 'r') as f:
data = json.load(f)
##############################################################################