ML_AI_training/MultModelsCl_CALL.py

186 lines
7.9 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
# from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
# from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
# from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
# from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
# from sklearn.pipeline import Pipeline, make_pipeline
# #%% GLOBALS
# rs = {'random_state': 42}
# njobs = {'n_jobs': 10}
# scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
# , 'fscore' : make_scorer(f1_score)
# , 'mcc' : make_scorer(matthews_corrcoef)
# , 'precision' : make_scorer(precision_score)
# , 'recall' : make_scorer(recall_score)
# , 'roc_auc' : make_scorer(roc_auc_score)
# , 'jcc' : make_scorer(jaccard_score)
# })
# skf_cv = StratifiedKFold(n_splits = 10
# #, shuffle = False, random_state= None)
# , shuffle = True,**rs)
# rskf_cv = RepeatedStratifiedKFold(n_splits = 10
# , n_repeats = 3
# , **rs)
# mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
# jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
###############################################################################
#%% MultModelsCl: function call()
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')
#%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm
# , var_type = 'numerical'
# , skf_cv = skf_cv)
# sm_all = pd.DataFrame(mm_skf_scoresD2)
# sm_all = sm_all.T
# sm_CT = sm_all.filter(like='test_', axis=1)
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
#sm_BT.to_csv(outdir + 'ml/' + gene.lower() + '_sm_BT_allF.csv')
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# enn_all = pd.DataFrame(mm_skf_scoresD5)
# enn_all = enn_all.T
# enn_CT = enn_all.filter(like='test_', axis=1)
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
#enn_BT.to_csv(outdir + 'ml/' + gene.lower() + '_enn_BT_allF.csv')
#%% Repeated ENN
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
# , target = y_renn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# renn_all = pd.DataFrame(mm_skf_scoresD6)
# renn_all = renn_all.T
# renn_CT = renn_all.filter(like='test_', axis=1)
#renn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# renn_BT = renn_all.filter(like='bts_', axis=1)
# renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
###############################################################################
# end of script
##############################################################################