saving work with scripts for feature selection
This commit is contained in:
parent
a9dc3c43e5
commit
fa0f5e5b39
3 changed files with 15 additions and 222 deletions
|
@ -207,8 +207,8 @@ X_genomicFN = ['maf'
|
|||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
#, 'lineage'
|
||||
, 'lineage_count_all'
|
||||
, 'lineage_count_unique'
|
||||
#, 'lineage_count_all'
|
||||
#, 'lineage_count_unique'
|
||||
]
|
||||
|
||||
#%% Construct numerical and categorical column names
|
||||
|
@ -256,7 +256,7 @@ all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
|||
all_df_wtgt.shape
|
||||
#%%================================================================
|
||||
#%% Apply ML
|
||||
#TODO: Apply oversampling!
|
||||
#TODO: A
|
||||
|
||||
#%% Data
|
||||
#X = all_df_wtgt[numerical_FN+categorical_FN]
|
||||
|
@ -272,16 +272,16 @@ X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
|||
# Quick check
|
||||
(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
|
||||
#%% MultClassPipeSKFCV: function call()
|
||||
mm_skf_scoresD = MultClassPipeSKFCV(input_df = X
|
||||
, target = y
|
||||
, var_type = 'numerical'
|
||||
, skf_cv = skf_cv)
|
||||
# mm_skf_scoresD = MultClassPipeSKFCV(input_df = X
|
||||
# , target = y
|
||||
# , var_type = 'numerical'
|
||||
# , skf_cv = skf_cv)
|
||||
|
||||
|
||||
mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD)
|
||||
mm_skf_scores_df_all
|
||||
mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0)
|
||||
mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results
|
||||
print(mm_skf_scores_df_train)
|
||||
print(mm_skf_scores_df_test)
|
||||
# mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD)
|
||||
# mm_skf_scores_df_all
|
||||
# mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0)
|
||||
# mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results
|
||||
# print(mm_skf_scores_df_train)
|
||||
# print(mm_skf_scores_df_test)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue