added notes to run yc models with dissected features
This commit is contained in:
parent
a784f9cc4e
commit
f761dd4479
2 changed files with 13 additions and 98 deletions
|
@ -1,3 +1,10 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun May 29 07:43:21 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
|
@ -251,100 +258,4 @@ def run_all_ML(input_pd, target_label, blind_test_input_df, blind_test_target, p
|
|||
|
||||
#return(result_pd)
|
||||
return(results_all)
|
||||
|
||||
|
||||
#%% CALL function
|
||||
#run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
# Baseline_data
|
||||
|
||||
YC_resD2 = run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_baseline = YC_resD2['CrossValResultsDF']
|
||||
CVResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_baseline = YC_resD2['BlindTestResultsDF']
|
||||
BTSResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# from sklearn.utils import all_estimators
|
||||
# for name, algorithm in all_estimators(type_filter="classifier"):
|
||||
# clf = algorithm()
|
||||
# print('Name:', name, '\nAlgo:', clf)
|
||||
|
||||
# Random Oversampling
|
||||
YC_resD_ros = run_all_ML(input_pd=X_ros, target_label=y_ros, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_ros = YC_resD_ros['CrossValResultsDF']
|
||||
CVResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_ros = YC_resD_ros['BlindTestResultsDF']
|
||||
BTSResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# Random Undersampling
|
||||
YC_resD_rus = run_all_ML(input_pd=X_rus, target_label=y_rus, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_rus = YC_resD_rus['CrossValResultsDF']
|
||||
CVResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_rus = YC_resD_rus['BlindTestResultsDF']
|
||||
BTSResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# Random Oversampling+Undersampling
|
||||
YC_resD_rouC = run_all_ML(input_pd=X_rouC, target_label=y_rouC, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_rouC = YC_resD_rouC['CrossValResultsDF']
|
||||
CVResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_rouC = YC_resD_rouC['BlindTestResultsDF']
|
||||
BTSResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# SMOTE NC
|
||||
YC_resD_smnc = run_all_ML(input_pd=X_smnc, target_label=y_smnc, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_smnc = YC_resD_smnc['CrossValResultsDF']
|
||||
CVResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_smnc = YC_resD_smnc['BlindTestResultsDF']
|
||||
BTSResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
##############################################################################
|
||||
#============================================
|
||||
# BASELINE models with dissected featues
|
||||
#============================================
|
||||
# Genomics
|
||||
yC_gf = run_all_ML(input_pd=X[X_genomicFN], target_label=y, blind_test_input_df=X_bts[X_genomicFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_gfCT_baseline= yC_gf['CrossValResultsDF']
|
||||
yc_gfCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_gfBT_baseline = yC_gf['BlindTestResultsDF']
|
||||
yc_gfBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# Evolutionary
|
||||
yC_ev = run_all_ML(input_pd=X[X_evolFN], target_label=y, blind_test_input_df=X_bts[X_evolFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_evCT_baseline= yC_ev['CrossValResultsDF']
|
||||
yc_evCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_evBT_baseline = yC_ev['BlindTestResultsDF']
|
||||
yc_evBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# strucF:All
|
||||
yC_sfall = run_all_ML(input_pd=X[X_strFN], target_label=y, blind_test_input_df=X_bts[X_strFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_sfallCT_baseline= yC_sfall['CrossValResultsDF']
|
||||
yc_sfallCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_sfallBT_baseline = yC_sfall['BlindTestResultsDF']
|
||||
yc_sfallBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# strucF:Common ONLY
|
||||
yC_sfco= run_all_ML(input_pd=X[common_cols_stabiltyN], target_label=y
|
||||
, blind_test_input_df=X_bts[common_cols_stabiltyN]
|
||||
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_sfcoCT_baseline= yC_sfco['CrossValResultsDF']
|
||||
yc_sfcoCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_sfcoBT_baseline = yC_sfco['BlindTestResultsDF']
|
||||
yc_sfcoBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# strucF:common_stability + foldX_cols i.e interaction
|
||||
yC_fxss= run_all_ML(input_pd=X[common_cols_stabiltyN+foldX_cols], target_label=y
|
||||
, blind_test_input_df=X_bts[common_cols_stabiltyN+foldX_cols]
|
||||
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_fxssCT_baseline= yC_fxss['CrossValResultsDF']
|
||||
yc_fxssCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_fxssBT_baseline = yC_fxss['BlindTestResultsDF']
|
||||
yc_fxssBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# categorical
|
||||
yC_cat= run_all_ML(input_pd=X[categorical_FN], target_label=y
|
||||
, blind_test_input_df=X_bts[categorical_FN]
|
||||
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
yc_catCT_baseline= yC_cat['CrossValResultsDF']
|
||||
yc_catCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
yc_catBT_baseline = yC_cat['BlindTestResultsDF']
|
||||
yc_catBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue