saving and organising work to call form cmd line
This commit is contained in:
parent
d9a1888e8c
commit
f2634f77ef
5 changed files with 232 additions and 106 deletions
|
@ -6,89 +6,93 @@ Created on Fri Mar 4 15:25:33 2022
|
|||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pprint as pp
|
||||
#from copy import deepcopy
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn.linear_model import LogisticRegression, LinearRegression
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
from sklearn.metrics import average_precision_score
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from imblearn.pipeline import Pipeline
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import RepeatedStratifiedKFold
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
import json
|
||||
|
||||
from sklearn.linear_model import RidgeClassifier, SGDClassifier, PassiveAggressiveClassifier
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from sklearn.utils import all_estimators
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
|
||||
#%%
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'accuracy' : make_scorer(accuracy_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
#%%
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target, skf_cv
|
||||
|
@ -111,9 +115,9 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
|
||||
returns
|
||||
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||
|
||||
'''
|
||||
# determine categorical and numerical features
|
||||
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
|
@ -133,7 +137,7 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
#%% Specify multiple Classification models
|
||||
# Specify multiple Classification models
|
||||
lr = LogisticRegression(**rs)
|
||||
lrcv = LogisticRegressionCV(**rs)
|
||||
gnb = GaussianNB()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue