saving and organising work to call form cmd line

This commit is contained in:
Tanushree Tunstall 2022-05-28 11:25:04 +01:00
parent d9a1888e8c
commit f2634f77ef
5 changed files with 232 additions and 106 deletions

View file

@ -6,6 +6,38 @@ Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
#%% GLOBALS
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score)
, 'mcc' : make_scorer(matthews_corrcoef)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jcc' : make_scorer(jaccard_score)
})
skf_cv = StratifiedKFold(n_splits = 10
#, shuffle = False, random_state= None)
, shuffle = True,**rs)
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
, n_repeats = 3
, **rs)
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
###############################################################################
#%% MultModelsCl: function call()
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
@ -22,35 +54,7 @@ baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm
# , var_type = 'numerical'
# , skf_cv = skf_cv)
# sm_all = pd.DataFrame(mm_skf_scoresD2)
# sm_all = sm_all.T
# sm_CT = sm_all.filter(like='test_', axis=1)
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# enn_all = pd.DataFrame(mm_skf_scoresD5)
# enn_all = enn_all.T
# enn_CT = enn_all.filter(like='test_', axis=1)
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
@ -97,7 +101,7 @@ rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8= MultModelsCl(input_df = X_rouC
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
@ -106,12 +110,43 @@ mm_skf_scoresD8= MultModelsCl(input_df = X_rouC
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = ros_all.filter(like='test_', axis=1)
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = ros_all.filter(like='bts_', axis=1)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%%
#%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm
# , var_type = 'numerical'
# , skf_cv = skf_cv)
# sm_all = pd.DataFrame(mm_skf_scoresD2)
# sm_all = sm_all.T
# sm_CT = sm_all.filter(like='test_', axis=1)
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# enn_all = pd.DataFrame(mm_skf_scoresD5)
# enn_all = enn_all.T
# enn_CT = enn_all.filter(like='test_', axis=1)
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% Repeated ENN
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
# , target = y_renn
# , var_type = 'numerical'