added UQ scripts to do hyperparam ML models
This commit is contained in:
parent
4dbc90ad44
commit
ee163d3978
3 changed files with 634 additions and 0 deletions
207
UQ_LR.py
Normal file
207
UQ_LR.py
Normal file
|
@ -0,0 +1,207 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon May 16 05:59:12 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Import libs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from xgboost import XGBClassifier
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
#%% Get train-test split and scoring functions
|
||||
# X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
||||
# , num_df_wtgt['mutation_class']
|
||||
# , test_size = 0.33
|
||||
# , random_state = 2
|
||||
# , shuffle = True
|
||||
# , stratify = num_df_wtgt['mutation_class'])
|
||||
|
||||
y.to_frame().value_counts().plot(kind = 'bar')
|
||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['saga']
|
||||
},
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['l2', 'none'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'clf__estimator__C': np.logspace(0, 4, 10),
|
||||
'clf__estimator__penalty': ['l1', 'l2'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_lr = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_lr_fit = gscv_lr.fit(X, y)
|
||||
gscv_lr_fit_be_mod = gscv_lr_fit.best_params_
|
||||
gscv_lr_fit_be_res = gscv_lr_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_lr_fit_be_mod)
|
||||
print('Best models score:\n', gscv_lr_fit.best_score_, ':' , round(gscv_lr_fit.best_score_, 2))
|
||||
|
||||
#print('\nMean test score from fit results:', round(mean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_lr_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
test_predict = gscv_lr_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
pd.DataFrame.from_dict(lr_bts_dict, orient = 'index', columns = 'best_model')
|
||||
|
||||
lr_bts_df = pd.DataFrame.from_dict(lr_bts_dict,orient = 'index')
|
||||
lr_bts_df.columns = ['Logistic_Regression']
|
||||
print(lr_bts_df)
|
||||
|
||||
# d2 = {'best_model_params': lis(gscv_lr_fit_be_mod.items() )}
|
||||
# d2
|
||||
# def Merge(dict1, dict2):
|
||||
# res = {**dict1, **dict2}
|
||||
# return res
|
||||
# d3 = Merge(d2, lr_bts_dict)
|
||||
# d3
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_lr_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
lr_bts_df.columns
|
||||
lr_output = pd.concat([model_params_df, lr_bts_df], axis = 0)
|
||||
lr_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from lr_output
|
||||
lr_df = lr_output.drop([0], axis = 0)
|
||||
lr_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
140
UQ_RF.py
Normal file
140
UQ_RF.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed May 18 06:03:24 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [RandomForestClassifier(**rs
|
||||
, **njobs
|
||||
, bootstrap = True
|
||||
, oob_score = True)],
|
||||
'clf__estimator__max_depth': [4, 6, 8, 10, 12, 16, 20, None]
|
||||
, 'clf__estimator__class_weight':['balanced','balanced_subsample']
|
||||
, 'clf__estimator__n_estimators': [10, 25, 50, 100]
|
||||
, 'clf__estimator__criterion': ['gini', 'entropy']#, 'log_loss']
|
||||
#, 'clf__estimator__max_features': ['auto', 'sqrt']
|
||||
, 'clf__estimator__min_samples_leaf': [1, 2, 3, 4, 5, 10]
|
||||
, 'clf__estimator__min_samples_split': [2, 5, 15, 20]
|
||||
}
|
||||
]
|
||||
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
# Grid search i.e hyperparameter tuning and refitting on mcc
|
||||
gscv_rf = GridSearchCV(pipeline
|
||||
, parameters
|
||||
#, scoring = 'f1', refit = 'f1'
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, **njobs
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv_rf_fit = gscv_rf.fit(X, y)
|
||||
|
||||
gscv_rf_fit_be_mod = gscv_rf_fit.best_params_
|
||||
gscv_rf_fit_be_res = gscv_rf_fit.cv_results_
|
||||
|
||||
print('Best model:\n', gscv_rf_fit_be_mod)
|
||||
print('Best models score:\n', gscv_rf_fit.best_score_, ':' , round(gscv_rf_fit.best_score_, 2))
|
||||
|
||||
print('\nMean test score from fit results:', round(mean(gscv_rf_fit_be_re['mean_test_mcc']),2))
|
||||
print('\nMean test score from fit results:', round(np.nanmean(gscv_rf_fit_be_res['mean_test_mcc']),2))
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', )
|
||||
|
||||
test_predict = gscv_rf_fit.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_btsf, test_predict))
|
||||
print(matthews_corrcoef(y_btsf, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
rf_bts_dict = {#'best_model': list(gscv_rf_fit_be_mod.items())
|
||||
'bts_fscore' : None
|
||||
, 'bts_mcc' : None
|
||||
, 'bts_precision': None
|
||||
, 'bts_recall' : None
|
||||
, 'bts_accuracy' : None
|
||||
, 'bts_roc_auc' : None
|
||||
, 'bts_jaccard' : None }
|
||||
rf_bts_dict
|
||||
rf_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
rf_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
rf_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
pd.DataFrame.from_dict(rf_bts_dict, orient = 'index', columns = 'best_model')
|
||||
|
||||
rf_bts_df = pd.DataFrame.from_dict(rf_bts_dict,orient = 'index')
|
||||
rf_bts_df.columns = ['Logistic_Regression']
|
||||
print(rf_bts_df)
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_rf_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
rf_bts_df.columns
|
||||
rf_output = pd.concat([model_params_df, rf_bts_df], axis = 0)
|
||||
rf_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from rf_output
|
||||
rf_df = rf_output.drop([0], axis = 0)
|
||||
rf_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
|
||||
|
||||
|
287
UQ_pnca_ML.py
Normal file
287
UQ_pnca_ML.py
Normal file
|
@ -0,0 +1,287 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 6 13:41:54 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn.linear_model import LogisticRegression, LinearRegression
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score
|
||||
from sklearn.metrics import jaccard_score
|
||||
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
from sklearn.metrics import average_precision_score
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
import itertools
|
||||
#import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
#from imblearn.over_sampling import RandomOverSampler
|
||||
#from imblearn.over_sampling import SMOTE
|
||||
#from imblearn.pipeline import Pipeline
|
||||
#from sklearn.datasets import make_classification
|
||||
from sklearn.model_selection import cross_validate, cross_val_score
|
||||
from sklearn.model_selection import RepeatedStratifiedKFold
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
#from imblearn.combine import SMOTEENN
|
||||
#from imblearn.under_sampling import EditedNearestNeighbours
|
||||
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
, n_repeats=3
|
||||
#, shuffle = False, random_state= None)
|
||||
#, shuffle = True
|
||||
,**rs)
|
||||
#my_mcc = make_scorer({'mcc':make_scorer(matthews_corrcoef})
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
#from MultClassPipe import MultClassPipeline
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
from loopity_loop import MultClassPipeSKFLoop
|
||||
from MultClassPipe3 import MultClassPipeSKFCV
|
||||
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/git/Data/'
|
||||
indir = datadir + drug + '/input/'
|
||||
outdir = datadir + drug + '/output/'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
||||
|
||||
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
||||
my_df.dtypes
|
||||
my_df_cols = my_df.columns
|
||||
|
||||
geneL_basic = ['pnca']
|
||||
|
||||
# -- CHECK script -- imports.py
|
||||
#%% get cols
|
||||
mycols = my_df.columns
|
||||
mycols
|
||||
|
||||
# change from numberic to
|
||||
num_type = ['int64', 'float64']
|
||||
cat_type = ['object', 'bool']
|
||||
|
||||
# TODO:
|
||||
# Treat active site aa pos as category and not numerical: This needs to be part of merged_df3!
|
||||
#if my_df['active_aa_pos'].dtype in num_type:
|
||||
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
||||
# my_df['active_aa_pos'].dtype
|
||||
|
||||
# -- CHECK script -- imports.py
|
||||
#%%============================================================================
|
||||
#%% IMPUTE values for OR
|
||||
|
||||
#%% Combine mmCSM_lig Data
|
||||
|
||||
#%% Combine PROVEAN data
|
||||
|
||||
#%% Combine ED logo data
|
||||
|
||||
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
||||
|
||||
# get logic from upstream!
|
||||
my_df_ml = my_df.copy()
|
||||
|
||||
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
|
||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
||||
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
||||
|
||||
#%%============================================================================
|
||||
# Separate blind test set
|
||||
my_df_ml[drug].isna().sum()
|
||||
|
||||
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
||||
blind_test_df.shape
|
||||
|
||||
training_df = my_df_ml[my_df_ml[drug].notna()]
|
||||
training_df.shape
|
||||
|
||||
# Target1: dst
|
||||
training_df[drug].value_counts()
|
||||
training_df['dst_mode'].value_counts()
|
||||
|
||||
#%% Build X
|
||||
common_cols_stabiltyN = ['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2']
|
||||
|
||||
foldX_cols = ['contacts'
|
||||
#, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||
#, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
||||
#, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
||||
#, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
||||
#, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
||||
#, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
||||
]
|
||||
|
||||
X_strFN = ['rsa'
|
||||
#, 'asa'
|
||||
, 'kd_values'
|
||||
, 'rd_values']
|
||||
|
||||
X_evolFN = ['consurf_score'
|
||||
, 'snap2_score']
|
||||
|
||||
# quick inspection which lineage to use:
|
||||
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
|
||||
|
||||
X_genomicFN = ['maf'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
#, 'lineage'
|
||||
, 'lineage_count_all'
|
||||
, 'lineage_count_unique'
|
||||
]
|
||||
|
||||
#%% Construct numerical and categorical column names
|
||||
|
||||
# numerical feature names
|
||||
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
||||
|
||||
#categorical feature names
|
||||
categorical_FN = ['ss_class'
|
||||
, 'wt_prop_water'
|
||||
# , 'lineage_labels' # misleading if using merged_df3
|
||||
, 'mut_prop_water'
|
||||
, 'wt_prop_polarity'
|
||||
, 'mut_prop_polarity'
|
||||
, 'wt_calcprop'
|
||||
, 'mut_calcprop'
|
||||
#, 'active_aa_pos'
|
||||
]
|
||||
|
||||
#%% extracting dfs based on numerical, categorical column names
|
||||
#----------------------------------
|
||||
# WITHOUT the target var included
|
||||
#----------------------------------
|
||||
num_df = training_df[numerical_FN]
|
||||
num_df.shape
|
||||
|
||||
cat_df = training_df[categorical_FN]
|
||||
cat_df.shape
|
||||
|
||||
all_df = training_df[numerical_FN + categorical_FN]
|
||||
all_df.shape
|
||||
|
||||
#------------------------------
|
||||
# WITH the target var included:
|
||||
#'wtgt': with target
|
||||
#------------------------------
|
||||
# drug and dst_mode should be the same thing
|
||||
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
|
||||
num_df_wtgt.shape
|
||||
|
||||
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
|
||||
cat_df_wtgt.shape
|
||||
|
||||
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
||||
all_df_wtgt.shape
|
||||
#%%================================================================
|
||||
#%% Apply ML
|
||||
#TODO: Apply oversampling!
|
||||
|
||||
#%% Data
|
||||
#X = all_df_wtgt[numerical_FN+categorical_FN]
|
||||
X = all_df_wtgt[numerical_FN]
|
||||
y = all_df_wtgt['dst_mode']
|
||||
|
||||
#Blind test data {same format}
|
||||
X_bts = blind_test_df[numerical_FN]
|
||||
y_bts = blind_test_df['dst_mode']
|
||||
|
||||
X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
||||
|
||||
# Quick check
|
||||
(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
|
||||
#%% MultClassPipeSKFCV: function call()
|
||||
mm_skf_scoresD = MultClassPipeSKFCV(input_df = X
|
||||
, target = y
|
||||
, var_type = 'numerical'
|
||||
, skf_cv = skf_cv)
|
||||
|
||||
|
||||
mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD)
|
||||
mm_skf_scores_df_all
|
||||
mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0)
|
||||
mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results
|
||||
print(mm_skf_scores_df_train)
|
||||
print(mm_skf_scores_df_test)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue