saving work
This commit is contained in:
parent
877862acb7
commit
ec2d5ca25b
2 changed files with 35 additions and 4 deletions
10
my_data6.py
10
my_data6.py
|
@ -152,7 +152,7 @@ X_vars11 = my_df[x_stability_cols + X_strF + X_evolF ]
|
|||
|
||||
#%%
|
||||
X_vars1.shape[1]
|
||||
|
||||
X_vars5.shape[1]
|
||||
# TODO: stratified cross validate
|
||||
# Train-test Split
|
||||
|
||||
|
@ -161,11 +161,13 @@ X_train, X_test, y_train, y_test = train_test_split(X_vars1,
|
|||
target1,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
MultClassPipeline(X_train, X_test, y_train, y_test)
|
||||
|
||||
t1_res = MultClassPipeline(X_train, X_test, y_train, y_test)
|
||||
t1_res
|
||||
# TARGET3
|
||||
X_train3, X_test3, y_train3, y_test3 = train_test_split(X_vars5,
|
||||
target3,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
MultClassPipeline(X_train3, X_test3, y_train3, y_test3)
|
||||
t3_res = MultClassPipeline(X_train3, X_test3, y_train3, y_test3)
|
||||
t3_res
|
||||
#%%
|
29
p_jr_d1.py
29
p_jr_d1.py
|
@ -372,4 +372,33 @@ print(pipe2.classification_report (y_test, np.argmax(predicted, axis = 1)))
|
|||
enc = preprocessing.OneHotEncoder()
|
||||
enc.fit(X_train)
|
||||
enc.transform(X_train).toarray()
|
||||
#%%
|
||||
from sklearn.metrics import mean_squared_error, make_scorer
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
boston = load_boston()
|
||||
|
||||
X_train, y_train = pd.DataFrame(boston.data, columns = boston.feature_names), boston.target
|
||||
|
||||
model1 = Pipeline(steps = [
|
||||
('pre', MinMaxScaler()),
|
||||
('reg', LinearRegression())])
|
||||
|
||||
score_fn = make_scorer(mean_squared_error)
|
||||
scores = cross_validate(model1, X_train, y_train
|
||||
, scoring = score_fn
|
||||
, cv = 10)
|
||||
|
||||
from itertools import combinations
|
||||
def train(X):
|
||||
return cross_validate(model1, X, y_train
|
||||
, scoring = score_fn
|
||||
#, return_train_score = False)
|
||||
, return_estimator = True)['test_score']
|
||||
|
||||
scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns, 12)]
|
||||
means = [score.mean() for score in scores]
|
||||
means
|
Loading…
Add table
Add a link
Reference in a new issue