saving work

This commit is contained in:
Tanushree Tunstall 2022-03-05 15:13:26 +00:00
parent 877862acb7
commit ec2d5ca25b
2 changed files with 35 additions and 4 deletions

View file

@ -152,7 +152,7 @@ X_vars11 = my_df[x_stability_cols + X_strF + X_evolF ]
#%% #%%
X_vars1.shape[1] X_vars1.shape[1]
X_vars5.shape[1]
# TODO: stratified cross validate # TODO: stratified cross validate
# Train-test Split # Train-test Split
@ -161,11 +161,13 @@ X_train, X_test, y_train, y_test = train_test_split(X_vars1,
target1, target1,
test_size = 0.33, test_size = 0.33,
random_state = 42) random_state = 42)
MultClassPipeline(X_train, X_test, y_train, y_test) t1_res = MultClassPipeline(X_train, X_test, y_train, y_test)
t1_res
# TARGET3 # TARGET3
X_train3, X_test3, y_train3, y_test3 = train_test_split(X_vars5, X_train3, X_test3, y_train3, y_test3 = train_test_split(X_vars5,
target3, target3,
test_size = 0.33, test_size = 0.33,
random_state = 42) random_state = 42)
MultClassPipeline(X_train3, X_test3, y_train3, y_test3) t3_res = MultClassPipeline(X_train3, X_test3, y_train3, y_test3)
t3_res
#%%

View file

@ -372,4 +372,33 @@ print(pipe2.classification_report (y_test, np.argmax(predicted, axis = 1)))
enc = preprocessing.OneHotEncoder() enc = preprocessing.OneHotEncoder()
enc.fit(X_train) enc.fit(X_train)
enc.transform(X_train).toarray() enc.transform(X_train).toarray()
#%%
from sklearn.metrics import mean_squared_error, make_scorer
from sklearn.model_selection import cross_validate
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
boston = load_boston()
X_train, y_train = pd.DataFrame(boston.data, columns = boston.feature_names), boston.target
model1 = Pipeline(steps = [
('pre', MinMaxScaler()),
('reg', LinearRegression())])
score_fn = make_scorer(mean_squared_error)
scores = cross_validate(model1, X_train, y_train
, scoring = score_fn
, cv = 10)
from itertools import combinations
def train(X):
return cross_validate(model1, X, y_train
, scoring = score_fn
#, return_train_score = False)
, return_estimator = True)['test_score']
scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns, 12)]
means = [score.mean() for score in scores]
means