saving work
This commit is contained in:
parent
a1631ea54b
commit
e28a296d98
8 changed files with 153 additions and 212 deletions
|
@ -82,13 +82,13 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
et = ExtraTreesClassifier(**rs)
|
||||
rf = RandomForestClassifier(**rs)
|
||||
rf2 = RandomForestClassifier(
|
||||
min_samples_leaf = 50,
|
||||
n_estimators = 150,
|
||||
bootstrap = True,
|
||||
oob_score = True,
|
||||
n_jobs = -1,
|
||||
random_state = 42,
|
||||
max_features = 'auto')
|
||||
min_samples_leaf = 50
|
||||
, n_estimators = 150
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, n_jobs = -1
|
||||
, **rs
|
||||
, max_features = 'auto')
|
||||
|
||||
xgb = XGBClassifier(**rs, verbosity = 0)
|
||||
classification_metrics = {
|
||||
|
@ -97,20 +97,20 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
,'Precision': []
|
||||
,'Recall': []
|
||||
,'Accuracy': []
|
||||
#,'ROC_AUC': []
|
||||
,'ROC_AUC': []
|
||||
}
|
||||
models = [
|
||||
('Logistic Regression' , log_reg)
|
||||
, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors', knn)
|
||||
, ('SVM' , svm)
|
||||
# , ('MLP' , mlp)
|
||||
# , ('Decision Tree' , dt)
|
||||
# , ('Extra Trees' , et)
|
||||
# , ('Random Forest' , rf)
|
||||
# , ('Naive Bayes' , nb)
|
||||
, ('MLP' , mlp)
|
||||
, ('Decision Tree' , dt)
|
||||
, ('Extra Trees' , et)
|
||||
, ('Random Forest' , rf)
|
||||
, ('Naive Bayes' , nb)
|
||||
|
||||
#, ('Random Forest2' , rf2)
|
||||
, ('Random Forest2' , rf2)
|
||||
#, ('XGBoost' , xgb)
|
||||
]
|
||||
|
||||
|
@ -118,7 +118,7 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
, shuffle = True
|
||||
, **rs)
|
||||
|
||||
skf_dict = {}
|
||||
# skf_dict = {}
|
||||
fold_no = 1
|
||||
fold_dict={}
|
||||
|
||||
|
@ -145,12 +145,12 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
#----------------
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
#pres = precision_score(y_test_fold, y_pred_fold)
|
||||
#recall = recall_score(y_test_fold, y_pred_fold)
|
||||
pres = precision_score(y_test_fold, y_pred_fold, zero_division=0)
|
||||
recall = recall_score(y_test_fold, y_pred_fold, zero_division=0)
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
#pres = precision_score(y_test_fold, y_pred_fold, zero_division=0)
|
||||
#recall = recall_score(y_test_fold, y_pred_fold, zero_division=0)
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
#roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
|
||||
fold=("fold_"+str(fold_no))
|
||||
|
||||
|
@ -165,7 +165,7 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
fold_dict[model_name][fold].update({'Precision' : pres})
|
||||
fold_dict[model_name][fold].update({'Recall' : recall})
|
||||
fold_dict[model_name][fold].update({'Accuracy' : accu})
|
||||
#fold_dict[model_name][fold].update({'ROC_AUC' : roc_auc})
|
||||
fold_dict[model_name][fold].update({'ROC_AUC' : roc_auc})
|
||||
|
||||
fold_no +=1
|
||||
#pp.pprint(skf_dict)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue