added scripts for playing base_estimator
This commit is contained in:
parent
5138036d8b
commit
de05652ef6
2 changed files with 364 additions and 0 deletions
195
base_estimator2.py
Normal file
195
base_estimator2.py
Normal file
|
@ -0,0 +1,195 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Tue Mar 15 09:50:37 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
#https://stackoverflow.com/questions/50272416/gridsearch-on-model-and-classifiers
|
||||||
|
|
||||||
|
#%%
|
||||||
|
# https://github.com/davidsbatista/machine-learning-notebooks/blob/master/hyperparameter-across-models.ipynb
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn import datasets
|
||||||
|
from sklearn.ensemble import ExtraTreesClassifier
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
from sklearn.ensemble import AdaBoostClassifier
|
||||||
|
from sklearn.ensemble import GradientBoostingClassifier
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
|
||||||
|
from sklearn.base import BaseEstimator
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.linear_model import SGDClassifier
|
||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||||
|
from xgboost import XGBClassifier
|
||||||
|
|
||||||
|
#%%
|
||||||
|
#%% my numerical data
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
||||||
|
, num_df_wtgt['mutation_class']
|
||||||
|
, test_size = 0.33
|
||||||
|
, random_state = 2
|
||||||
|
, shuffle = True
|
||||||
|
, stratify = num_df_wtgt['mutation_class'])
|
||||||
|
|
||||||
|
y_train.to_frame().value_counts().plot(kind = 'bar')
|
||||||
|
y_test.to_frame().value_counts().plot(kind = 'bar')
|
||||||
|
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||||
|
, 'fscore' : make_scorer(f1_score)
|
||||||
|
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
|
, 'precision' : make_scorer(precision_score)
|
||||||
|
, 'recall' : make_scorer(recall_score)
|
||||||
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
|
#, 'jaccard' : make_scorer(jaccard_score)
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
#%% ClfSwitcher()
|
||||||
|
class ClfSwitcher(BaseEstimator):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
estimator = SGDClassifier(),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
A Custom BaseEstimator that can switch between classifiers.
|
||||||
|
:param estimator: sklearn object - The classifier
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.estimator = estimator
|
||||||
|
|
||||||
|
|
||||||
|
def fit(self, X, y=None, **kwargs):
|
||||||
|
self.estimator.fit(X, y)
|
||||||
|
return self
|
||||||
|
|
||||||
|
def predict(self, X, y=None):
|
||||||
|
return self.estimator.predict(X)
|
||||||
|
|
||||||
|
def predict_proba(self, X):
|
||||||
|
return self.estimator.predict_proba(X)
|
||||||
|
|
||||||
|
def score(self, X, y):
|
||||||
|
return self.estimator.score(X, y)
|
||||||
|
|
||||||
|
parameters = [
|
||||||
|
{
|
||||||
|
'clf__estimator': [SGDClassifier()], # SVM if hinge loss / logreg if log loss
|
||||||
|
#'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
|
||||||
|
#'tfidf__stop_words': ['english', None],
|
||||||
|
'clf__estimator__penalty': ('l2', 'elasticnet', 'l1'),
|
||||||
|
'clf__estimator__max_iter': [50, 80],
|
||||||
|
'clf__estimator__tol': [1e-4],
|
||||||
|
'clf__estimator__loss': ['hinge', 'log', 'modified_huber'],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'clf__estimator': [MultinomialNB()],
|
||||||
|
#'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
|
||||||
|
#'tfidf__stop_words': [None],
|
||||||
|
'clf__estimator__alpha': (1e-2, 1e-3, 1e-1),
|
||||||
|
},
|
||||||
|
|
||||||
|
# {
|
||||||
|
# 'clf__estimator': [LogisticRegression()],
|
||||||
|
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
# 'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
|
# 'clf__estimator__max__iter': list(range(100,800,100)),
|
||||||
|
# 'clf__estimator__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
|
||||||
|
# },
|
||||||
|
]
|
||||||
|
|
||||||
|
pipeline = Pipeline([
|
||||||
|
('pre', MinMaxScaler()),
|
||||||
|
('clf', ClfSwitcher()),
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
gscv = GridSearchCV(pipeline
|
||||||
|
, parameters
|
||||||
|
, cv=5
|
||||||
|
, n_jobs=12
|
||||||
|
, return_train_score=False
|
||||||
|
, verbose=3)
|
||||||
|
|
||||||
|
#gscv.fit(train_data, train_labels)
|
||||||
|
|
||||||
|
# Fit
|
||||||
|
gscv.fit(X_train, y_train)
|
||||||
|
print('Best model:\n', gscv.best_params_)
|
||||||
|
print('Best models score:\n', gscv.best_score_)
|
||||||
|
gscv.score(X_test, y_test) # see how it does on test
|
||||||
|
|
||||||
|
mod_pred = gscv.predict(X_test)
|
||||||
|
|
||||||
|
fscore = f1_score(y_test, mod_pred)
|
||||||
|
fscore
|
||||||
|
#%% GridSearchCV: single model
|
||||||
|
#https://stackoverflow.com/questions/71079357/invalid-parameter-clf-learning-rate-for-estimator-pipeline
|
||||||
|
pipe_xgb = Pipeline([('clf', XGBClassifier(random_state=42, use_label_encoder=False) )])
|
||||||
|
grid_params_xgb = [{'clf__max__depth': [2, 4],
|
||||||
|
'clf__n__estimators': [50, 100],
|
||||||
|
'clf__learning__rate': [0.0001, 0.001]}]
|
||||||
|
|
||||||
|
gs_xgb = GridSearchCV(estimator = pipe_xgb,
|
||||||
|
param_grid = grid_params_xgb,
|
||||||
|
scoring='accuracy',
|
||||||
|
cv=10,
|
||||||
|
n_jobs=5)
|
||||||
|
gs_xgb.fit(X_train, y_train)
|
||||||
|
y_predict = gs_xgb.predict(X_test)
|
||||||
|
print('Test set accuracy score for best params: %.3f ' % accuracy_score(y_test, y_predict))
|
||||||
|
|
||||||
|
print('Best model:\n', gs_xgb.best_params_)
|
||||||
|
print('Best models score:\n', gs_xgb.best_score_)
|
||||||
|
# Best model:
|
||||||
|
# {'clf__learning__rate': 0.0001, 'clf__max__depth': 2, 'clf__n__estimators': 50}
|
||||||
|
#NOTE: takes time to run!
|
||||||
|
#%% model
|
||||||
|
# Note: cannot have '___' in estimator names
|
||||||
|
# '__' is used only before stating the param names
|
||||||
|
# '__' is usef in both places when using clf_switcher
|
||||||
|
|
||||||
|
pipe_log_reg = Pipeline([('clf', LogisticRegression(random_state=42) )])
|
||||||
|
grid_params_log_reg = [{
|
||||||
|
#'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
|
'clf__max_iter': list(range(100,800,100)),
|
||||||
|
'clf__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
|
||||||
|
}]
|
||||||
|
|
||||||
|
gs_log_reg = GridSearchCV(estimator = pipe_log_reg
|
||||||
|
, param_grid = grid_params_log_reg
|
||||||
|
, scoring='accuracy'# works
|
||||||
|
# , scoring = scoring_fn, refit = False # problem doesn't predict because doesn't know
|
||||||
|
#, scoring = ['accuracy','f1', 'recall']
|
||||||
|
#, refit = 'recall'
|
||||||
|
, cv=10
|
||||||
|
, n_jobs=5)
|
||||||
|
|
||||||
|
gs_log_reg.fit(X_train, y_train)
|
||||||
|
#y_predict = gs_log_reg.predict(X_test)
|
||||||
|
gs_log_reg_fit = gs_log_reg.fit(X_train, y_train)
|
||||||
|
gs_log_reg_fit_res = gs_log_reg.cv_results_ # still don't know how to use it
|
||||||
|
|
||||||
|
#y_predict = gs_log_reg.predict(X_test)
|
||||||
|
|
||||||
|
print('Test set accuracy score for best params: %.3f ' % accuracy_score(y_test, y_predict))
|
||||||
|
|
||||||
|
print('Best model:\n', gs_log_reg.best_params_)
|
||||||
|
print('Best models score:\n', gs_log_reg.best_score_)
|
||||||
|
|
||||||
|
# note: For multi-metric scoring, the parameter refit must be set to a scorer key or a callable to refit an estimator with the best parameter setting on the whole data and make the best_* attributes available for that metric.
|
||||||
|
# If this is not needed, refit should be set to False explicitly. True was passed.
|
||||||
|
#refit : boolean, string, or callable, default=True
|
||||||
|
#Refit an estimator using the best found parameters on the whole dataset. For multiple metric evaluation, this needs to be a string denoting the scorer that would be used to find the best parameters for refitting the estimator at the end. Where there are considerations other than maximum score in choosing a best estimator, refit can be set to a function which returns the selected best_index_ given cv_results_. The refitted estimator is made available at the best_estimator_ attribute and permits using predict directly on this GridSearchCV instance. Also for multiple metric evaluation, the attributes best_index_, best_score_ and best_params_ will only be available if refit is set and all of them will be determined w.r.t this specific scorer. best_score_ is not
|
||||||
|
# returned if refit is callable. See scoring parameter to know more about multiple metric evaluation.
|
||||||
|
# This GridSearchCV instance was initialized with `refit=False`. predict is available only after refitting on the best parameters. You can refit an estimator manually using the `best_params_` attribute
|
||||||
|
|
||||||
|
#https://stackoverflow.com/questions/57986374/how-to-fix-the-error-for-multi-metric-scoring-for-oneclasssvm-and-gridsearchcv
|
||||||
|
|
||||||
|
# PROBLEM: using multiple scoring metrics with GridSearchCV
|
||||||
|
#https://stackoverflow.com/questions/53973563/using-multiple-metric-evaluation-with-gridsearchcv
|
169
base_estimator3.py
Normal file
169
base_estimator3.py
Normal file
|
@ -0,0 +1,169 @@
|
||||||
|
#%% Import libs
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn import datasets
|
||||||
|
from sklearn.ensemble import ExtraTreesClassifier
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
from sklearn.ensemble import AdaBoostClassifier
|
||||||
|
from sklearn.ensemble import GradientBoostingClassifier
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
|
||||||
|
from sklearn.base import BaseEstimator
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.linear_model import SGDClassifier
|
||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||||
|
from xgboost import XGBClassifier
|
||||||
|
#%% Get train-test split and scoring functions
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
||||||
|
, num_df_wtgt['mutation_class']
|
||||||
|
, test_size = 0.33
|
||||||
|
, random_state = 2
|
||||||
|
, shuffle = True
|
||||||
|
, stratify = num_df_wtgt['mutation_class'])
|
||||||
|
|
||||||
|
y_train.to_frame().value_counts().plot(kind = 'bar')
|
||||||
|
y_test.to_frame().value_counts().plot(kind = 'bar')
|
||||||
|
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||||
|
, 'fscore' : make_scorer(f1_score)
|
||||||
|
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
|
, 'precision' : make_scorer(precision_score)
|
||||||
|
, 'recall' : make_scorer(recall_score)
|
||||||
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
|
#, 'jaccard' : make_scorer(jaccard_score)
|
||||||
|
})
|
||||||
|
|
||||||
|
#%% Logistic Regression + hyperparam: GridSearch
|
||||||
|
# Note: cannot have '___' in estimator names
|
||||||
|
# '__' is used only before stating the param names
|
||||||
|
# '__' is usef in both places when using clf_switcher
|
||||||
|
|
||||||
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
|
|
||||||
|
# FIXME: solver and penalty conflict, consider using 1
|
||||||
|
grid_params_log_reg = [{
|
||||||
|
#'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
#'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
|
'clf__max_iter': list(range(100,800,100)),
|
||||||
|
'clf__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
|
||||||
|
}]
|
||||||
|
|
||||||
|
pipe_log_reg = Pipeline([
|
||||||
|
('pre', MinMaxScaler())
|
||||||
|
,('clf', LogisticRegression(**rs))])
|
||||||
|
|
||||||
|
gs_log_reg = GridSearchCV(pipe_log_reg
|
||||||
|
, param_grid = grid_params_log_reg
|
||||||
|
, scoring ='f1' , refit = 'f1' # works
|
||||||
|
#, scoring = mcc_score_fn, refit = 'mcc'
|
||||||
|
#, scoring = scoring_fn, refit = False # problem doesn't predict because doesn't know
|
||||||
|
, cv = 10
|
||||||
|
, n_jobs = 10# based on /proc/cpuinfo
|
||||||
|
, return_train_score = False
|
||||||
|
, verbose = 3)
|
||||||
|
|
||||||
|
gs_log_reg.fit(X_train, y_train)
|
||||||
|
#gs_log_reg_fit = gs_log_reg.fit(X_train, y_train)
|
||||||
|
#gs_log_reg_fit_res = gs_log_reg.cv_results_ # still don't know how to use it
|
||||||
|
#pp.pprint(gs_log_reg_fit_res)
|
||||||
|
#y_predict = gs_log_reg.predict(X_test)
|
||||||
|
|
||||||
|
#print('Test set accuracy score for best params: %.3f ' % accuracy_score(y_test, y_predict))
|
||||||
|
print('Best model:\n', gs_log_reg.best_params_)
|
||||||
|
print('Best models score:\n', gs_log_reg.best_score_)
|
||||||
|
|
||||||
|
#GridSearchCV giving score from the best estimator different from the one indicated in refit parameter
|
||||||
|
#https://stackoverflow.com/questions/66116996/gridsearchcv-giving-score-from-the-best-estimator-different-from-the-one-indicat
|
||||||
|
|
||||||
|
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
||||||
|
|
||||||
|
class ClfSwitcher(BaseEstimator):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
estimator = SGDClassifier(),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
A Custom BaseEstimator that can switch between classifiers.
|
||||||
|
:param estimator: sklearn object - The classifier
|
||||||
|
"""
|
||||||
|
self.estimator = estimator
|
||||||
|
|
||||||
|
def fit(self, X, y=None, **kwargs):
|
||||||
|
self.estimator.fit(X, y)
|
||||||
|
return self
|
||||||
|
|
||||||
|
def predict(self, X, y=None):
|
||||||
|
return self.estimator.predict(X)
|
||||||
|
|
||||||
|
def predict_proba(self, X):
|
||||||
|
return self.estimator.predict_proba(X)
|
||||||
|
|
||||||
|
def score(self, X, y):
|
||||||
|
return self.estimator.score(X, y)
|
||||||
|
|
||||||
|
parameters = [
|
||||||
|
{
|
||||||
|
'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
#'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
|
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||||
|
'clf__estimator__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
pipeline = Pipeline([
|
||||||
|
('pre', MinMaxScaler()),
|
||||||
|
('clf', ClfSwitcher()),
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
gscv = GridSearchCV(pipeline
|
||||||
|
, parameters
|
||||||
|
, scoring = 'f1', refit = 'f1'
|
||||||
|
, cv = 10
|
||||||
|
, n_jobs = 10 #based on /proc/cpuinfo
|
||||||
|
, return_train_score = False
|
||||||
|
, verbose = 3)
|
||||||
|
|
||||||
|
# Fit
|
||||||
|
gscv.fit(X_train, y_train)
|
||||||
|
print('Best model:\n', gscv.best_params_)
|
||||||
|
print('Best models score:\n', gscv.best_score_, ':' ,round(gscv.best_score_, 2))
|
||||||
|
# gscv.score(X_test, y_test) # see how it does on test
|
||||||
|
# check_score = f1_score(y_train, gscv.predict(X_train))
|
||||||
|
# check_score # should be the same as the best score when the same metric used!
|
||||||
|
# mod_pred = gscv.predict(X_test)
|
||||||
|
# fscore = f1_score(y_test, mod_pred)
|
||||||
|
# fscore
|
||||||
|
|
||||||
|
gscv_fit_be = gscv.fit(X_train, y_train)
|
||||||
|
gscv_fit_be_res = gscv_fit_be.cv_results_
|
||||||
|
print('\nMean test score from fit results:', round(mean(gscv_fit_be_res['mean_test_score']),2))
|
||||||
|
|
||||||
|
best_model = gscv.best_params_
|
||||||
|
best_model.keys()
|
||||||
|
best_model.values
|
||||||
|
|
||||||
|
cross_val_score(LogisticRegression(random_state=42
|
||||||
|
, solver='liblinear'
|
||||||
|
, max_iter = 100)
|
||||||
|
, X_train
|
||||||
|
, y_train
|
||||||
|
, cv = 10)
|
||||||
|
|
||||||
|
|
||||||
|
cval =round(mean(cross_val_score(LogisticRegression(random_state=42
|
||||||
|
, solver='liblinear'
|
||||||
|
, max_iter = 100)
|
||||||
|
, X_train
|
||||||
|
, y_train
|
||||||
|
, cv = 10)),2)
|
||||||
|
|
||||||
|
########check
|
||||||
|
print('Best models score:', round(gscv.best_score_, 2))
|
||||||
|
print('Mean test score from fit results:', round(mean(gscv_fit_be_res['mean_test_score']),2))
|
||||||
|
print('Best models cval:', cval)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue