added scripts for playing base_estimator
This commit is contained in:
parent
5138036d8b
commit
de05652ef6
2 changed files with 364 additions and 0 deletions
169
base_estimator3.py
Normal file
169
base_estimator3.py
Normal file
|
@ -0,0 +1,169 @@
|
|||
#%% Import libs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from xgboost import XGBClassifier
|
||||
#%% Get train-test split and scoring functions
|
||||
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
||||
, num_df_wtgt['mutation_class']
|
||||
, test_size = 0.33
|
||||
, random_state = 2
|
||||
, shuffle = True
|
||||
, stratify = num_df_wtgt['mutation_class'])
|
||||
|
||||
y_train.to_frame().value_counts().plot(kind = 'bar')
|
||||
y_test.to_frame().value_counts().plot(kind = 'bar')
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
#, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
#%% Logistic Regression + hyperparam: GridSearch
|
||||
# Note: cannot have '___' in estimator names
|
||||
# '__' is used only before stating the param names
|
||||
# '__' is usef in both places when using clf_switcher
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
|
||||
# FIXME: solver and penalty conflict, consider using 1
|
||||
grid_params_log_reg = [{
|
||||
#'clf__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
#'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
|
||||
}]
|
||||
|
||||
pipe_log_reg = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
,('clf', LogisticRegression(**rs))])
|
||||
|
||||
gs_log_reg = GridSearchCV(pipe_log_reg
|
||||
, param_grid = grid_params_log_reg
|
||||
, scoring ='f1' , refit = 'f1' # works
|
||||
#, scoring = mcc_score_fn, refit = 'mcc'
|
||||
#, scoring = scoring_fn, refit = False # problem doesn't predict because doesn't know
|
||||
, cv = 10
|
||||
, n_jobs = 10# based on /proc/cpuinfo
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
gs_log_reg.fit(X_train, y_train)
|
||||
#gs_log_reg_fit = gs_log_reg.fit(X_train, y_train)
|
||||
#gs_log_reg_fit_res = gs_log_reg.cv_results_ # still don't know how to use it
|
||||
#pp.pprint(gs_log_reg_fit_res)
|
||||
#y_predict = gs_log_reg.predict(X_test)
|
||||
|
||||
#print('Test set accuracy score for best params: %.3f ' % accuracy_score(y_test, y_predict))
|
||||
print('Best model:\n', gs_log_reg.best_params_)
|
||||
print('Best models score:\n', gs_log_reg.best_score_)
|
||||
|
||||
#GridSearchCV giving score from the best estimator different from the one indicated in refit parameter
|
||||
#https://stackoverflow.com/questions/66116996/gridsearchcv-giving-score-from-the-best-estimator-different-from-the-one-indicat
|
||||
|
||||
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
||||
|
||||
class ClfSwitcher(BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator = SGDClassifier(),
|
||||
):
|
||||
"""
|
||||
A Custom BaseEstimator that can switch between classifiers.
|
||||
:param estimator: sklearn object - The classifier
|
||||
"""
|
||||
self.estimator = estimator
|
||||
|
||||
def fit(self, X, y=None, **kwargs):
|
||||
self.estimator.fit(X, y)
|
||||
return self
|
||||
|
||||
def predict(self, X, y=None):
|
||||
return self.estimator.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
return self.estimator.predict_proba(X)
|
||||
|
||||
def score(self, X, y):
|
||||
return self.estimator.score(X, y)
|
||||
|
||||
parameters = [
|
||||
{
|
||||
'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
#'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||
'clf__estimator__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
|
||||
}
|
||||
]
|
||||
|
||||
pipeline = Pipeline([
|
||||
('pre', MinMaxScaler()),
|
||||
('clf', ClfSwitcher()),
|
||||
])
|
||||
|
||||
|
||||
gscv = GridSearchCV(pipeline
|
||||
, parameters
|
||||
, scoring = 'f1', refit = 'f1'
|
||||
, cv = 10
|
||||
, n_jobs = 10 #based on /proc/cpuinfo
|
||||
, return_train_score = False
|
||||
, verbose = 3)
|
||||
|
||||
# Fit
|
||||
gscv.fit(X_train, y_train)
|
||||
print('Best model:\n', gscv.best_params_)
|
||||
print('Best models score:\n', gscv.best_score_, ':' ,round(gscv.best_score_, 2))
|
||||
# gscv.score(X_test, y_test) # see how it does on test
|
||||
# check_score = f1_score(y_train, gscv.predict(X_train))
|
||||
# check_score # should be the same as the best score when the same metric used!
|
||||
# mod_pred = gscv.predict(X_test)
|
||||
# fscore = f1_score(y_test, mod_pred)
|
||||
# fscore
|
||||
|
||||
gscv_fit_be = gscv.fit(X_train, y_train)
|
||||
gscv_fit_be_res = gscv_fit_be.cv_results_
|
||||
print('\nMean test score from fit results:', round(mean(gscv_fit_be_res['mean_test_score']),2))
|
||||
|
||||
best_model = gscv.best_params_
|
||||
best_model.keys()
|
||||
best_model.values
|
||||
|
||||
cross_val_score(LogisticRegression(random_state=42
|
||||
, solver='liblinear'
|
||||
, max_iter = 100)
|
||||
, X_train
|
||||
, y_train
|
||||
, cv = 10)
|
||||
|
||||
|
||||
cval =round(mean(cross_val_score(LogisticRegression(random_state=42
|
||||
, solver='liblinear'
|
||||
, max_iter = 100)
|
||||
, X_train
|
||||
, y_train
|
||||
, cv = 10)),2)
|
||||
|
||||
########check
|
||||
print('Best models score:', round(gscv.best_score_, 2))
|
||||
print('Mean test score from fit results:', round(mean(gscv_fit_be_res['mean_test_score']),2))
|
||||
print('Best models cval:', cval)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue