added MultClassPipe2.py that has one hot encoder included
This commit is contained in:
parent
b637ebc6d2
commit
dd8fd5b8ac
2 changed files with 216 additions and 0 deletions
89
my_data10.py
Normal file
89
my_data10.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Mar 5 12:57:32 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
#%% try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
def precision(y_true,y_pred):
|
||||
return precision_score(y_true,y_pred,pos_label = 1)
|
||||
def recall(y_true,y_pred):
|
||||
return recall_score(y_true, y_pred, pos_label = 1)
|
||||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
#%%
|
||||
|
||||
numerical_features_df.shape
|
||||
categorical_features_df.shape
|
||||
all_features_df.shape
|
||||
all_features_df.dtypes
|
||||
#%%
|
||||
target = target1
|
||||
#target = target3
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_trainC, X_testC, y_trainC, y_testC = train_test_split(categorical_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
#%%
|
||||
|
||||
|
||||
|
||||
#%% with feature selection
|
||||
|
||||
# Determine categorical and numerical features
|
||||
input_df = numerical_features_df.copy()
|
||||
#input_df = categorical_features_df
|
||||
#input_df = all_features_df
|
||||
|
||||
numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# prepare data
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder = 'passthrough')
|
||||
|
||||
# model pipeline
|
||||
model = Pipeline(steps=[('prep', col_transform)
|
||||
, ('classifier', LogisticRegression())])
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred
|
||||
|
||||
selector_log = RFECV(estimator = model
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
|
||||
selector_log_x = selector_log.fit_transform(X_train, y_train)
|
||||
|
||||
print(selector_log_x.get_support())
|
||||
X_trainN.columns
|
||||
|
||||
print(selector_logistic_x.ranking_)
|
Loading…
Add table
Add a link
Reference in a new issue