tidying import script and moving estimators where the ML classifier func are
This commit is contained in:
parent
2898686bf8
commit
d9a1888e8c
1 changed files with 0 additions and 95 deletions
|
@ -14,105 +14,10 @@ print(np.__version__)
|
||||||
print(pd.__version__)
|
print(pd.__version__)
|
||||||
import pprint as pp
|
import pprint as pp
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from sklearn import linear_model
|
|
||||||
from sklearn import datasets
|
|
||||||
from collections import Counter
|
from collections import Counter
|
||||||
|
|
||||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
||||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
|
||||||
|
|
||||||
from sklearn.naive_bayes import BernoulliNB
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
|
||||||
from sklearn.svm import SVC
|
|
||||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
|
||||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
|
||||||
from sklearn.naive_bayes import GaussianNB
|
|
||||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
|
||||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
|
||||||
|
|
||||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
|
||||||
from sklearn.neural_network import MLPClassifier
|
|
||||||
|
|
||||||
from sklearn.svm import SVC
|
|
||||||
from xgboost import XGBClassifier
|
|
||||||
from sklearn.naive_bayes import MultinomialNB
|
|
||||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
||||||
|
|
||||||
from sklearn.compose import ColumnTransformer
|
|
||||||
from sklearn.compose import make_column_transformer
|
|
||||||
|
|
||||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
|
||||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
|
||||||
|
|
||||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
|
||||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
|
||||||
|
|
||||||
from sklearn.pipeline import Pipeline, make_pipeline
|
|
||||||
|
|
||||||
from sklearn.feature_selection import RFE, RFECV
|
|
||||||
|
|
||||||
import itertools
|
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
from statistics import mean, stdev, median, mode
|
|
||||||
|
|
||||||
from imblearn.over_sampling import RandomOverSampler
|
|
||||||
from imblearn.under_sampling import RandomUnderSampler
|
|
||||||
from imblearn.over_sampling import SMOTE
|
|
||||||
from sklearn.datasets import make_classification
|
|
||||||
from imblearn.combine import SMOTEENN
|
|
||||||
from imblearn.combine import SMOTETomek
|
|
||||||
|
|
||||||
from imblearn.over_sampling import SMOTENC
|
|
||||||
from imblearn.under_sampling import EditedNearestNeighbours
|
|
||||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
|
||||||
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn.base import BaseEstimator
|
|
||||||
import json
|
|
||||||
from sklearn.impute import KNNImputer as KNN
|
from sklearn.impute import KNNImputer as KNN
|
||||||
|
|
||||||
# My functions and globals
|
|
||||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
|
||||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
|
||||||
, 'precision' : make_scorer(precision_score)
|
|
||||||
, 'recall' : make_scorer(recall_score)
|
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
||||||
, 'jcc' : make_scorer(jaccard_score)
|
|
||||||
})
|
|
||||||
|
|
||||||
rs = {'random_state': 42}
|
|
||||||
njobs = {'n_jobs': 10}
|
|
||||||
skf_cv = StratifiedKFold(n_splits = 10
|
|
||||||
#, shuffle = False, random_state= None)
|
|
||||||
, shuffle = True,**rs)
|
|
||||||
|
|
||||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
||||||
, n_repeats = 3
|
|
||||||
, **rs)
|
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|
||||||
#%%
|
#%%
|
||||||
homedir = os.path.expanduser("~")
|
|
||||||
os.chdir(homedir + "/git/ML_AI_training/")
|
|
||||||
|
|
||||||
# my function
|
|
||||||
#from MultClassPipe import MultClassPipeline
|
|
||||||
from MultClassPipe2 import MultClassPipeline2
|
|
||||||
from loopity_loop import MultClassPipeSKFLoop
|
|
||||||
#from MultClassPipe3 import MultClassPipeSKFCV
|
|
||||||
#from UQ_MultClassPipe4 import MultClassPipeSKFCV
|
|
||||||
from UQ_MultModelsCl import MultModelsCl
|
|
||||||
#gene = 'pncA'
|
|
||||||
#drug = 'pyrazinamide'
|
|
||||||
|
|
||||||
#gene = 'katG'
|
|
||||||
#drug = 'isoniazid'
|
|
||||||
|
|
||||||
|
|
||||||
#==============
|
#==============
|
||||||
# directories
|
# directories
|
||||||
#==============
|
#==============
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue