added file UQ_ML_data.py which was pka UQ_pnca_ML.py
This commit is contained in:
parent
084c280f16
commit
cbfbb525fa
1 changed files with 424 additions and 0 deletions
424
UQ_ML_data.py
Normal file
424
UQ_ML_data.py
Normal file
|
@ -0,0 +1,424 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 6 13:41:54 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
def setvars(gene,drug):
|
||||
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from collections import Counter
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
#%% REMOVE once config is set up
|
||||
#from UQ_MultModelsCl import MultModelsCl
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/git/Data/'
|
||||
indir = datadir + drug + '/input/'
|
||||
outdir = datadir + drug + '/output/'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
||||
|
||||
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
||||
my_df.dtypes
|
||||
my_df_cols = my_df.columns
|
||||
|
||||
geneL_basic = ['pnca']
|
||||
|
||||
# -- CHECK script -- imports.py
|
||||
#%% get cols
|
||||
mycols = my_df.columns
|
||||
mycols
|
||||
|
||||
# change from numberic to
|
||||
num_type = ['int64', 'float64']
|
||||
cat_type = ['object', 'bool']
|
||||
|
||||
#TODO:
|
||||
# #Treat active site aa pos as category and not numerical: This needs to be part of merged_df3!
|
||||
# if my_df['active_aa_pos'].dtype in num_type:
|
||||
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
||||
# my_df['active_aa_pos'].dtype
|
||||
|
||||
# -- CHECK script -- imports.py
|
||||
#%%============================================================================
|
||||
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
||||
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
||||
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
||||
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
||||
|
||||
print("count of NULL values before imputation\n")
|
||||
my_df[or_cols].isnull().sum()
|
||||
|
||||
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
||||
|
||||
|
||||
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
||||
, index = my_df['mutationinformation']
|
||||
, columns = or_cols )
|
||||
my_dfI.columns = ['or_rawI', 'logorI']
|
||||
my_dfI.columns
|
||||
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
|
||||
my_dfI.head()
|
||||
|
||||
# merge with original based on index
|
||||
my_df['index_bm'] = my_df.index
|
||||
mydf_imputed = pd.merge(my_df
|
||||
, my_dfI
|
||||
, on = 'mutationinformation')
|
||||
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
||||
|
||||
my_df['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['logorI'].isna().sum()
|
||||
|
||||
len(my_df.columns)
|
||||
len(mydf_imputed.columns)
|
||||
|
||||
#%% AA property change
|
||||
|
||||
# Water prop change
|
||||
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
|
||||
my_df['water_change'].value_counts()
|
||||
water_prop_changeD = {
|
||||
'hydrophobic_to_neutral' : 'change'
|
||||
, 'hydrophobic_to_hydrophobic' : 'no_change'
|
||||
, 'neutral_to_neutral' : 'no_change'
|
||||
, 'neutral_to_hydrophobic' : 'change'
|
||||
, 'hydrophobic_to_hydrophilic' : 'change'
|
||||
, 'neutral_to_hydrophilic' : 'change'
|
||||
, 'hydrophilic_to_neutral' : 'change'
|
||||
, 'hydrophilic_to_hydrophobic' : 'change'
|
||||
, 'hydrophilic_to_hydrophilic' : 'no_change'
|
||||
}
|
||||
|
||||
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
||||
my_df['water_change'].value_counts()
|
||||
|
||||
# Polarity change
|
||||
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
polarity_prop_changeD = {
|
||||
'non-polar_to_non-polar' : 'no_change'
|
||||
, 'non-polar_to_neutral' : 'change'
|
||||
, 'neutral_to_non-polar' : 'change'
|
||||
, 'neutral_to_neutral' : 'no_change'
|
||||
, 'non-polar_to_basic' : 'change'
|
||||
, 'acidic_to_neutral' : 'change'
|
||||
, 'basic_to_neutral' : 'change'
|
||||
, 'non-polar_to_acidic' : 'change'
|
||||
, 'neutral_to_basic' : 'change'
|
||||
, 'acidic_to_non-polar' : 'change'
|
||||
, 'basic_to_non-polar' : 'change'
|
||||
, 'neutral_to_acidic' : 'change'
|
||||
, 'acidic_to_acidic' : 'no_change'
|
||||
, 'basic_to_acidic' : 'change'
|
||||
, 'basic_to_basic' : 'no_change'
|
||||
, 'acidic_to_basic' : 'change'}
|
||||
|
||||
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
# Electrostatics change
|
||||
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
calc_prop_changeD = {
|
||||
'non-polar_to_non-polar' : 'no_change'
|
||||
, 'non-polar_to_polar' : 'change'
|
||||
, 'polar_to_non-polar' : 'change'
|
||||
, 'non-polar_to_pos' : 'change'
|
||||
, 'neg_to_non-polar' : 'change'
|
||||
, 'non-polar_to_neg' : 'change'
|
||||
, 'pos_to_polar' : 'change'
|
||||
, 'pos_to_non-polar' : 'change'
|
||||
, 'polar_to_polar' : 'no_change'
|
||||
, 'neg_to_neg' : 'no_change'
|
||||
, 'polar_to_neg' : 'change'
|
||||
, 'pos_to_neg' : 'change'
|
||||
, 'pos_to_pos' : 'no_change'
|
||||
, 'polar_to_pos' : 'change'
|
||||
, 'neg_to_polar' : 'change'
|
||||
, 'neg_to_pos' : 'change'
|
||||
}
|
||||
|
||||
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
# Create a combined column summarising these three cols
|
||||
detect_change = 'change'
|
||||
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
|
||||
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
|
||||
my_df['aa_prop_change'] = (my_df[check_prop_cols].values == detect_change).any(1).astype(int)
|
||||
my_df['aa_prop_change'].value_counts()
|
||||
my_df['aa_prop_change'].dtype
|
||||
|
||||
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
|
||||
, 0: 'no_change'})
|
||||
|
||||
my_df['aa_prop_change'].value_counts()
|
||||
my_df['aa_prop_change'].dtype
|
||||
#%% Add lineage calc
|
||||
total_mtblineage_u = 8
|
||||
|
||||
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
|
||||
#bar = my_df[lineage_colnames]
|
||||
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
||||
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u
|
||||
|
||||
#%% Combine mmCSM_lig Data: DONE
|
||||
#%% Combine PROVEAN data: DONE
|
||||
#%% Combine ED logo data
|
||||
|
||||
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
||||
|
||||
# get logic from upstream!
|
||||
#my_df_ml = my_df.copy()
|
||||
my_df_ml = mydf_imputed.copy()
|
||||
|
||||
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
|
||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
||||
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
||||
|
||||
#%%============================================================================
|
||||
# Separate blind test set
|
||||
my_df_ml[drug].isna().sum()
|
||||
|
||||
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
||||
blind_test_df.shape
|
||||
|
||||
training_df = my_df_ml[my_df_ml[drug].notna()]
|
||||
training_df.shape
|
||||
|
||||
# Target1: dst
|
||||
training_df[drug].value_counts()
|
||||
training_df['dst_mode'].value_counts()
|
||||
|
||||
#%% Build X
|
||||
common_cols_stabiltyN = ['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2']
|
||||
|
||||
foldX_cols = ['contacts'
|
||||
, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
||||
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
||||
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
||||
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
||||
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
||||
]
|
||||
|
||||
X_strFN = ['rsa'
|
||||
#, 'asa'
|
||||
, 'kd_values'
|
||||
, 'rd_values']
|
||||
|
||||
X_evolFN = ['consurf_score'
|
||||
, 'snap2_score']
|
||||
|
||||
# quick inspection which lineage to use:
|
||||
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
|
||||
|
||||
X_genomicFN = ['maf'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
#, 'lineage'
|
||||
#, 'lineage_count_all'
|
||||
#, 'lineage_count_unique'
|
||||
]
|
||||
|
||||
#%% Construct numerical and categorical column names
|
||||
|
||||
# numerical feature names
|
||||
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
||||
|
||||
#categorical feature names
|
||||
categorical_FN = ['ss_class'
|
||||
# , 'wt_prop_water'
|
||||
# , 'lineage_labels' # misleading if using merged_df3
|
||||
# , 'mut_prop_water'
|
||||
# , 'wt_prop_polarity'
|
||||
# , 'mut_prop_polarity'
|
||||
# , 'wt_calcprop'
|
||||
# , 'mut_calcprop'
|
||||
#, 'active_aa_pos'
|
||||
]
|
||||
|
||||
#%% extracting dfs based on numerical, categorical column names
|
||||
#----------------------------------
|
||||
# WITHOUT the target var included
|
||||
#----------------------------------
|
||||
num_df = training_df[numerical_FN]
|
||||
num_df.shape
|
||||
|
||||
cat_df = training_df[categorical_FN]
|
||||
cat_df.shape
|
||||
|
||||
all_df = training_df[numerical_FN + categorical_FN]
|
||||
all_df.shape
|
||||
|
||||
#------------------------------
|
||||
# WITH the target var included:
|
||||
#'wtgt': with target
|
||||
#------------------------------
|
||||
# drug and dst_mode should be the same thing
|
||||
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
|
||||
num_df_wtgt.shape
|
||||
|
||||
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
|
||||
cat_df_wtgt.shape
|
||||
|
||||
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
||||
all_df_wtgt.shape
|
||||
#%%================================================================
|
||||
#%% Apply ML
|
||||
|
||||
#%% Data
|
||||
#------
|
||||
# X
|
||||
#------
|
||||
X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
|
||||
X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
|
||||
#X = all_df_wtgt[numerical_FN] # training numerical only
|
||||
#X_bts = blind_test_df[numerical_FN] # blind test data numerical
|
||||
|
||||
#------
|
||||
# y
|
||||
#------
|
||||
y = all_df_wtgt['dst_mode'] # training data y
|
||||
y_bts = blind_test_df['dst_mode'] # blind data test y
|
||||
|
||||
#Blind test data {same format}
|
||||
#X_bts = blind_test_df[numerical_FN]
|
||||
#X_bts = blind_test_df[numerical_FN + categorical_FN]
|
||||
#y_bts = blind_test_df['dst_mode']
|
||||
|
||||
X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
||||
|
||||
# Quick check
|
||||
(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
|
||||
##############################################################################
|
||||
print('Original Data\n', Counter(y)
|
||||
, 'Data dim:', X.shape)
|
||||
|
||||
###############################################################################
|
||||
#%%
|
||||
############################################################################
|
||||
# RESAMPLING
|
||||
###############################################################################
|
||||
#------------------------------
|
||||
# Simple Random oversampling
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
oversample = RandomOverSampler(sampling_strategy='minority')
|
||||
X_ros, y_ros = oversample.fit_resample(X, y)
|
||||
print('Simple Random OverSampling\n', Counter(y_ros))
|
||||
print(X_ros.shape)
|
||||
|
||||
#------------------------------
|
||||
# Simple Random Undersampling
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
undersample = RandomUnderSampler(sampling_strategy='majority')
|
||||
X_rus, y_rus = undersample.fit_resample(X, y)
|
||||
print('Simple Random UnderSampling\n', Counter(y_rus))
|
||||
print(X_rus.shape)
|
||||
|
||||
#------------------------------
|
||||
# Simple combine ROS and RUS
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
oversample = RandomOverSampler(sampling_strategy='minority')
|
||||
X_ros, y_ros = oversample.fit_resample(X, y)
|
||||
undersample = RandomUnderSampler(sampling_strategy='majority')
|
||||
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
|
||||
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC))
|
||||
print(X_rouC.shape)
|
||||
|
||||
#------------------------------
|
||||
# SMOTE_NC: oversampling
|
||||
# [numerical + categorical]
|
||||
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
|
||||
#------------------------------
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
num_featuresL = list(numerical_ix)
|
||||
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
|
||||
numerical_colind
|
||||
|
||||
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
categorical_colind = X.columns.get_indexer(list(categorical_ix))
|
||||
categorical_colind
|
||||
|
||||
k_sm = 5 # 5 is deafult
|
||||
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
|
||||
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
|
||||
print('SMOTE_NC OverSampling\n', Counter(y_smnc))
|
||||
print(X_smnc.shape)
|
||||
globals().update(locals()) # TROLOLOLOLOLOLS
|
||||
#print("i did a horrible hack :-)")
|
||||
###############################################################################
|
||||
#%% SMOTE RESAMPLING for NUMERICAL ONLY*
|
||||
# #------------------------------
|
||||
# # SMOTE: Oversampling
|
||||
# # [Numerical ONLY]
|
||||
# #------------------------------
|
||||
# k_sm = 1
|
||||
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
|
||||
# X_sm, y_sm = sm.fit_resample(X, y)
|
||||
# print(X_sm.shape)
|
||||
# print('SMOTE OverSampling\n', Counter(y_sm))
|
||||
# y_sm_df = y_sm.to_frame()
|
||||
# y_sm_df.value_counts().plot(kind = 'bar')
|
||||
|
||||
# #------------------------------
|
||||
# # SMOTE: Over + Undersampling COMBINED
|
||||
# # [Numerical ONLY]
|
||||
# #-----------------------------
|
||||
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
|
||||
# X_enn, y_enn = sm_enn.fit_resample(X, y)
|
||||
# print(X_enn.shape)
|
||||
# print('SMOTE Over+Under Sampling combined\n', Counter(y_enn))
|
||||
|
||||
###############################################################################
|
||||
# TODO: Find over and undersampling JUST for categorical data
|
Loading…
Add table
Add a link
Reference in a new issue