tidying script to run from cmd and via ssh
This commit is contained in:
parent
0a84a4b4dc
commit
b6f0308e42
4 changed files with 271 additions and 76 deletions
|
@ -117,15 +117,15 @@ print(len(X_enn)) #53
|
|||
|
||||
#------------------------------
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
num_featuresL = list(numerical_ix)
|
||||
numerical_colind = input_df.columns.get_indexer(list(numerical_ix) )
|
||||
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
|
||||
numerical_colind
|
||||
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
categorical_colind = input_df.columns.get_indexer(list(categorical_ix))
|
||||
categorical_colind = X.columns.get_indexer(list(categorical_ix))
|
||||
categorical_colind
|
||||
|
||||
k_sm = 5 # 5 is deafult
|
||||
|
|
|
@ -10,77 +10,57 @@ Created on Sun Mar 6 13:41:54 2022
|
|||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LinearRegression
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.ensemble import BaggingClassifier
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier
|
||||
from sklearn.gaussian_process import kernels
|
||||
from sklearn.gaussian_process.kernels import RBF
|
||||
from sklearn.gaussian_process.kernels import DotProduct
|
||||
from sklearn.gaussian_process.kernels import Matern
|
||||
from sklearn.gaussian_process.kernels import RationalQuadratic
|
||||
from sklearn.gaussian_process.kernels import WhiteKernel
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.linear_model import RidgeClassifier, SGDClassifier, PassiveAggressiveClassifier
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score
|
||||
from sklearn.metrics import jaccard_score
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
from sklearn.metrics import average_precision_score
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
import itertools
|
||||
#import seaborn as sns
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from imblearn.pipeline import Pipeline
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.model_selection import cross_validate, cross_val_score
|
||||
from sklearn.model_selection import RepeatedStratifiedKFold
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
|
@ -124,8 +104,8 @@ os.chdir(homedir + "/git/ML_AI_training/")
|
|||
from MultClassPipe2 import MultClassPipeline2
|
||||
from loopity_loop import MultClassPipeSKFLoop
|
||||
#from MultClassPipe3 import MultClassPipeSKFCV
|
||||
from UQ_MultClassPipe4 import MultClassPipeSKFCV
|
||||
|
||||
#from UQ_MultClassPipe4 import MultClassPipeSKFCV
|
||||
from UQ_MultModelsCl import MultModelsCl
|
||||
#gene = 'pncA'
|
||||
#drug = 'pyrazinamide'
|
||||
|
||||
|
|
|
@ -6,17 +6,7 @@
|
|||
# autosklearn --> pipleine --> components --> classification
|
||||
# https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components/classification
|
||||
|
||||
# TOADD:
|
||||
# LDA
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/lda.py
|
||||
# Multinomial_nb
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/multinomial_nb.py
|
||||
# passive_aggressive
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/passive_aggressive.py
|
||||
# SGD
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/sgd.py
|
||||
|
||||
|
||||
# ADDED 27/05/2022: Extra Tree + LRCV and RCCV
|
||||
######https://scikit-learn.org/stable/supervised_learning.html
|
||||
|
||||
########################################################################
|
||||
|
@ -57,7 +47,7 @@ param_grid_abc = [
|
|||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/extra_trees.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
|
||||
#======================
|
||||
estimator = ExtraTreesClassifier**rs)
|
||||
estimator = ExtraTreesClassifier(**rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_abc = Pipeline([
|
||||
|
@ -85,6 +75,40 @@ param_grid_abc = [
|
|||
}
|
||||
]
|
||||
|
||||
|
||||
#======================
|
||||
# Extra TreeClassifier()
|
||||
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html
|
||||
#======================
|
||||
estimator = ExtraTreeClassifier(**rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_abc = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('clf', ExtraTreesClassifier(**rs))])
|
||||
, ('clf', estimator)
|
||||
])
|
||||
|
||||
# Define hyperparmeter space to search for
|
||||
param_grid_abc = [
|
||||
{
|
||||
'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [cv]
|
||||
},
|
||||
|
||||
# 'clf': [ExtraTreeClassifier(**rs)],
|
||||
'clf__max_depth': [None],
|
||||
'clf__criterion': ['gini', 'entropy'],
|
||||
'clf__max_features': [None, 'sqrt', 'log2', 0.5, 1],
|
||||
'clf__min_samples_leaf': [1, 5, 10, 15, 20],
|
||||
'clf__min_samples_split': [2, 5, 10, 15, 20]
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
#===========================
|
||||
# DecisionTreeClassifier()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/decision_tree.py
|
||||
|
@ -304,8 +328,8 @@ param_grid_gbc = [
|
|||
#########################################################################
|
||||
#===========================
|
||||
# GaussianNB()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/gaussian_nb.py
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
|
||||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/gaussian_nb.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
|
||||
#===========================
|
||||
# Define estimator
|
||||
estimator = GaussianNB()
|
||||
|
@ -439,12 +463,58 @@ param_grid_lr = [
|
|||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
#########################################################################
|
||||
#===========================
|
||||
# LogisticRegressionCV () *
|
||||
# https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
|
||||
#===========================
|
||||
# Define estimator
|
||||
estimator = LogisticRegressionCV(cv = 10, **rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_lr = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
, ('clf', estimator)])
|
||||
|
||||
# Define hyperparmeter space to search for
|
||||
param_grid_lr = [
|
||||
|
||||
{'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [rskf_cv]
|
||||
},
|
||||
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['saga']
|
||||
},
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2', 'none'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
#########################################################################
|
||||
#==================
|
||||
# MLPClassifier()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/mlp.py
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
||||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/mlp.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
||||
#==================
|
||||
# Define estimator
|
||||
estimator = MLPClassifier(**rs)
|
||||
|
@ -531,6 +601,35 @@ param_grid_rc = [
|
|||
'clf__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||
}
|
||||
]
|
||||
|
||||
#######################################################################
|
||||
#====================
|
||||
# RidgeClassifier() *
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html
|
||||
#====================
|
||||
|
||||
# Define estimator
|
||||
estimator = RidgeClassifierCV(cv = 10, **rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_rc = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
, ('clf', estimator)
|
||||
])
|
||||
|
||||
param_grid_rc = [
|
||||
{
|
||||
'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [cv]
|
||||
},
|
||||
|
||||
{
|
||||
#'clf' : [RidgeClassifierCV(cv = 10, **rs)],
|
||||
'clf__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||
}
|
||||
]
|
||||
#######################################################################
|
||||
#========
|
||||
# SVC()
|
||||
|
|
|
@ -27,17 +27,42 @@ from sklearn.model_selection import train_test_split, cross_validate, cross_val_
|
|||
# Metric
|
||||
from sklearn.metrics import mean_squared_error, make_scorer, roc_auc_score, f1_score, matthews_corrcoef, accuracy_score, balanced_accuracy_score, confusion_matrix, classification_report
|
||||
|
||||
# other vars
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
#%% YC
|
||||
#def run_all_ML(input_pd, target_label, bts_input, bts_target, var_type):
|
||||
def run_all_ML(input_pd, target_label, preprocess = True, var_type = 'numerical'):
|
||||
def run_all_ML(input_pd, target_label, blind_test_input_df, blind_test_target, preprocess = True, var_type = 'numerical'):
|
||||
|
||||
#y = input_pd[target_label]
|
||||
#X = input_pd.drop(target_label,axis=1)
|
||||
y = target_label
|
||||
X = input_pd
|
||||
# determine categorical and numerical features
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = input_pd.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix = input_pd.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# Determine preprocessing steps ~ var_type
|
||||
|
@ -54,16 +79,20 @@ def run_all_ML(input_pd, target_label, preprocess = True, var_type = 'numerical'
|
|||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
result_pd = pd.DataFrame()
|
||||
result_bts_pd = pd.DataFrame()
|
||||
#results_btsD = {}
|
||||
results_all = {}
|
||||
|
||||
for name, algorithm in all_estimators(type_filter="classifier"):
|
||||
try:
|
||||
estmator = algorithm()
|
||||
temp_pd = pd.DataFrame()
|
||||
temp_cm = pd.DataFrame()
|
||||
|
||||
# orig
|
||||
pipe = Pipeline([
|
||||
("model" , algorithm())
|
||||
])
|
||||
# # orig
|
||||
# pipe = Pipeline([
|
||||
# ("model" , algorithm())
|
||||
# ])
|
||||
|
||||
# turn on and off preprocessing
|
||||
if preprocess == True:
|
||||
|
@ -76,8 +105,14 @@ def run_all_ML(input_pd, target_label, preprocess = True, var_type = 'numerical'
|
|||
("model" , algorithm())
|
||||
])
|
||||
|
||||
# cross val scores
|
||||
y_pred = cross_val_predict(pipe, X, y, cv = 10, **njobs)
|
||||
# CHANGE to cross_validate: ONLY THEN CAN YOU TRUST
|
||||
# y_pred = cross_validate(pipe, X, y
|
||||
# , cv = 10
|
||||
# , scoring = scoring_fn
|
||||
# , **njobs)
|
||||
|
||||
y_pred = cross_val_predict(pipe, X, y, cv = 10, n_jobs=10)
|
||||
_mcc = round(matthews_corrcoef(y_pred, y), 3)
|
||||
_bacc = round(balanced_accuracy_score(y_pred, y), 3)
|
||||
_f1 = round(f1_score(y_pred, y), 3)
|
||||
|
@ -88,7 +123,88 @@ def run_all_ML(input_pd, target_label, preprocess = True, var_type = 'numerical'
|
|||
columns=['estimator', 'TP', 'TN', 'FP', 'FN',
|
||||
'roc_auc', 'matthew', 'bacc', 'f1']),\
|
||||
ignore_index=True)
|
||||
#=========================
|
||||
# Blind test: BTS results
|
||||
#=========================
|
||||
#Build the final results with all scores for a feature selected model
|
||||
pipe.fit(input_pd, target_label)
|
||||
bts_predict = pipe.predict(blind_test_input_df)
|
||||
|
||||
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
|
||||
print('\nMCC on Blind test:' , bts_mcc_score)
|
||||
#print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
|
||||
|
||||
_mccBTS = round(matthews_corrcoef(bts_predict, blind_test_target), 3)
|
||||
_baccBTS = round(balanced_accuracy_score(bts_predict, blind_test_target), 3)
|
||||
_f1BTS = round(f1_score(bts_predict, blind_test_target), 3)
|
||||
_roc_aucBTS = round(roc_auc_score(bts_predict, blind_test_target), 3)
|
||||
_tnBTS, _fpBTS, _fnBTS, _tpBTS = confusion_matrix(bts_predict, blind_test_target).ravel()
|
||||
|
||||
result_bts_pd = result_bts_pd.append(pd.DataFrame(np.column_stack([name
|
||||
, _tpBTS, _tnBTS
|
||||
, _fpBTS, _fnBTS
|
||||
, _roc_aucBTS
|
||||
, _mccBTS
|
||||
, _baccBTS, _f1BTS]),\
|
||||
columns=['estimator', 'TP', 'TN', 'FP', 'FN',
|
||||
'roc_auc', 'matthew', 'bacc', 'f1']),\
|
||||
ignore_index=True)
|
||||
|
||||
|
||||
results_all['CrossValResultsDF'] = result_pd
|
||||
results_all['BlindTestResultsDF'] = result_bts_pd
|
||||
|
||||
except Exception as e:
|
||||
print("Got an error while running {}".format(name))
|
||||
print("XXXGot an error while running {}".format(name))
|
||||
print(e)
|
||||
return(result_pd)
|
||||
|
||||
|
||||
#return(result_pd)
|
||||
return(results_all)
|
||||
|
||||
|
||||
#%% CALL function
|
||||
#run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
|
||||
YC_resD2 = run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
|
||||
YC_resD_ros = run_all_ML(input_pd=X_ros, target_label=y_ros, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
|
||||
CVResultsDF = YC_resD2['CrossValResultsDF']
|
||||
CVResultsDF.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF = YC_resD2['BlindTestResultsDF']
|
||||
BTSResultsDF.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# from sklearn.utils import all_estimators
|
||||
# for name, algorithm in all_estimators(type_filter="classifier"):
|
||||
# clf = algorithm()
|
||||
# print('Name:', name, '\nAlgo:', clf)
|
||||
|
||||
# Random Oversampling
|
||||
YC_resD_ros = run_all_ML(input_pd=X_ros, target_label=y_ros, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_ros = YC_resD_ros['CrossValResultsDF']
|
||||
CVResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_ros = YC_resD_ros['BlindTestResultsDF']
|
||||
BTSResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# Random Undersampling
|
||||
YC_resD_rus = run_all_ML(input_pd=X_rus, target_label=y_rus, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_rus = YC_resD_rus['CrossValResultsDF']
|
||||
CVResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_rus = YC_resD_rus['BlindTestResultsDF']
|
||||
BTSResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# Random Oversampling+Undersampling
|
||||
YC_resD_rouC = run_all_ML(input_pd=X_rouC, target_label=y_rouC, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_rouC = YC_resD_rouC['CrossValResultsDF']
|
||||
CVResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_rouC = YC_resD_rouC['BlindTestResultsDF']
|
||||
BTSResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
# SMOTE NC
|
||||
YC_resD_smnc = run_all_ML(input_pd=X_smnc, target_label=y_smnc, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
|
||||
CVResultsDF_smnc = YC_resD_smnc['CrossValResultsDF']
|
||||
CVResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
BTSResultsDF_smnc = YC_resD_smnc['BlindTestResultsDF']
|
||||
BTSResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue